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Abstract. In [1], Kim and Min introduced the operation γ∗ and H(θ)-open sets within the con-
text of generalized topological spaces, utilizing a hereditary class H. In this study, we extend these
concepts by employing two generalized topologies, µ and ν, along with a hereditary class H. Specif-
ically, we introduce and investigate the mixed operation γ∗(µ, ν) (denoted briefly as γ∗(µ, ν)) and
the mixed H(θ(µ, ν))-open sets (denoted as H(θ(µ, ν))-open sets). We explore the interrelation-
ships between γ∗(µ, ν), γ∗, and the µ-closure, as well as the connections between H(θ(µ, ν))-open
sets, θ(µ, ν)-open sets, and µ-open sets. Additionally, we define the concepts of Hr(µ, ν)-regular
open sets and H(µ, ν)-regular open sets. Finally, we examine properties and characterizations of
H(θ(µ, ν))-open sets in terms of Hr(µ, ν)-regular open sets and H(µ, ν)-regular open sets.
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1. Introduction

Á. Császár formulated the idea of generalized topology and generalized open sets in
[2], along with the notion of θ-open sets and their properties. For further details, one can
refer to [3–5]. In [6], he also introduced the concept of hereditary classes in generalized
topological spaces. Specifically, a subset H ⊆ P(X) (where P(X) denotes the power set of
a non-empty set X) is termed a hereditary class on X if it satisfies the condition that for
any A ⊆ B and B ∈ H, it follows that A ∈ H. Building on these foundations of generalized
topology and hereditary classes, authors in [1] introduced the concepts of H(θ)-open sets
and the operator γ∗.
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In this study, we extend these ideas by examining two generalized topologies, denoted
as µ and ν, within the framework of a hereditary class H. We introduce and investigate the
concepts of the mixed operator γ∗(µ, ν) (denoted briefly as γ∗(µ, ν)) and mixed H(θ(µ, ν))-
open sets (referred to as H(θ(µ, ν))-open sets). Our exploration includes a detailed study
of their properties and the relationships between γ∗(µ, ν), the operator γ∗, and the µ-
closure. In addition, we examine the interconnections between sets that are H(θ(µ, ν))-
open, θ(µ, ν)-open, and µ-open. We also present various properties and characterizations
of these concepts in terms of Hr(µ, ν)-regular open sets and H(µ, ν)-regular sets.

2. Preliminaries

Let X ̸= ∅ and let P(X) be its power set. A family µ ⊆ P(X) is called a generalized
topology (GT) on X if:

∅ ∈ µ,⋃
i∈I

Ui ∈ µ for any collection {Ui}i∈I ⊆ µ.

This concept was first introduced by Á. Császár in [2]. A pair (X,µ) is then referred to
as a generalized topological space (GTS) on X. The elements of µ are called µ-open
sets, while their complements are called µ-closed sets. The union of all elements of µ
is denoted by Mµ, as stated in [7]. A GTS (X,µ) is is said to be strong [8] if X ∈ µ.
For a subset A of a GTS (X,µ), the µ-closure of A, denoted cµ(A), is defined as the
intersection of all µ-closed sets that contain A. The µ-interior of A, denoted iµ(A), is
the union of all µ-open sets that are contained within A (see [2, 7]).

Now, considering a hereditary class H, an operator ()∗ : P(X) → P(X) was introduced
in [3]. Specifically, c∗ : P(X) → P(X) is defined using ()∗ by c∗(A) = A ∪ A∗, where
A∗ = {x ∈ X | A ∩ M /∈ H, ∀M ∈ µ, x ∈ M}. Here, x /∈ A∗ if and only if there exists
M ∈ µ such that x ∈ M and M ∩A ∈ H.

Recalling definitions and notations from [3], let µ be a GT on X and P(X) be the
power set of X. A collection θ ⊆ P(X) is defined as follows: A ∈ θ if for each x ∈ A,
there exists M ∈ µ containing x such that M ⊆ cµ(M) ⊆ A. The family θ is a GT
on X included in µ, and the elements of θ are θ(µ)-open sets, with complements called
θ(µ)-closed sets. For A ⊆ X, the operation γθ : P(X) → P(X) is defined in [3], by
γθ(A) = {x ∈ X | cµ(M) ∩A ̸= ∅, ∀M ∈ µ, x ∈ M}.

Kim and Min in [5], extended the study to θ-open using a hereditary class H: a
collection H(θ) ⊆ P(X) is defined such that A ∈ H(θ) if for each x ∈ A, there exists
M ∈ µ containing x with M ⊆ c∗µ(M) ⊆ A. The family H(θ) is a GT on X included
in µ, with elements termed H(θ)-open sets and their complements H(θ)-closed sets.
Additionally, the operation γ∗ : P(X) → P(X) is defined in [5] as γ∗(A) = {x ∈ X |
c∗µ(M) ∩A ̸= ∅,∀M ∈ µ, x ∈ M}.

In [4], Á. Császár and Makai Jr. introduced θ(ν1, ν2)-open sets as a means of combining
two generalized topologies (GTs), ν1 and ν2, on a set X. A subset A ⊆ X belongs to
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θ(ν1, ν2) if, for every x ∈ A, there exists M ∈ ν1 such that x ∈ M ⊆ cν2(M) ⊆ A.
Moreover, the family θ(ν1, ν2) itself forms a GT contained within ν1 on X. The sets in
θ(ν1, ν2) are called θ(ν1, ν2)-open sets, while their complements are referred to as θ(ν1, ν2)-
closed sets.

Subsequently, in [9], Abdo Qahis and Awn Alqahtani introduced a modification of this
concept, defining the class of θ̃(ν1, ν2)-open sets. A subset A ⊆ X is said to be mixed
θ̃(ν1, ν2)-open (or simply θ̃(ν1, ν2)-open) if, for every x ∈ A, there exists M ∈ ν1 such that
x ∈ M and M ⊆ cν2(M) ∩Mν1 ⊆ A.

In conclusion of this section, we review the following important facts due to their
significance to the content of our paper.

Theorem 1. [6] Let µ be a GTS on X and H a hereditary class on X. Then A∗ ⊆
c∗µ(A) ⊆ cµ(A) for any A ⊆ X.

In [10], the authors introduced the operator i∗ : P(X) → P(X), defined by i∗(A) =
X \ c∗(X \A) for A ⊆ X.

Theorem 2. [10] Let µ be a GT on X and H a hereditary class. Then for A ⊆ X,

(i) c∗µ(A) = X \ i∗µ(X \A).

(ii) iµ(A) ⊆ i∗µ(A) ⊆ A.

Lemma 1. [11] Let µ and ν be two GTs on a nonempty set X and A ⊆ X. Then the
following statements hold:

(i) x ∈ iθ(µ,ν)(A) if and only if there exists a µ-open set M containing x such that
M ⊆ cν(M) ⊆ A.

(ii) If A is ν-open in X, then γθ(µ,ν)(A) = cµ(A).

Definition 1. [1] Let µ be GT on a nonempty set X, and H a hereditary class on X.
Then (X,µ) is H-regular if and only if for every x ∈ X and every µ-open set U containing
x, there exists a µ-open set V containing x such that x ∈ V ⊆ c∗(V ) ⊆ U .

Theorem 3. [11] Let µ and ν be measures on a nonempty set X. Then X is (µ, ν)-regular
if and only if for every x ∈ X and every µ-open set U containing x, there exists a µ-open
set V containing x such that x ∈ V ⊆ cν(V ) ⊆ U .

3. Properties of the Mixed Operator γ∗(µ, ν)

In [4], Császár and Makai Jr introduced an operation γθ(µ,ν) : P(X) → P(X), utilizing
two generalized topologies µ and ν on X. According to their definition, x ∈ γθ(µ,ν)(A)
if and only if cν(M) ∩ A ̸= ∅ for every µ-open set M containing x. If x /∈ Mµ, then by
definition x ∈ γθ(µ,ν)(A). Additionally, x /∈ γθ(µ,ν)(A) if and only if there exists M ∈ µ
with x ∈ M such that cν(M) ∩A = ∅.
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Definition 2. Let µ and ν be two GT’s on a nonempty set X, and H a hereditary class
on X. An operation γ∗(µ, ν) : P(X) → P(X) is defined as follows: for every A ⊆ X,

γ∗(µ, ν)(A) = {x ∈ X : c∗ν(M) ∩A ̸= ∅, ∀M ∈ µ and x ∈ M}.

If x /∈ Mµ, then by definition x ∈ γ∗(µ, ν)(A).

According to Definition 2, x /∈ γ∗(µ, ν)(A) if and only if there exists M ∈ µ and x ∈ M
such that c∗ν(M) ∩A = ∅.

The following is an immediate consequence that can be obviously obtained.

Corollary 1. Let µ and ν be two GT’s on a nonempty set X such that µ = ν, and let H
be a hereditary class on X. For any A ⊆ X, the following statements hold:

(i) γ∗(µ, ν)(A) = γ∗(A).

(ii) If H = {∅}, then γ∗(µ, ν)(A) = γ∗(A) = γθ(A).

Theorem 4. Let µ and ν be two GT’s on a nonempty set X, and let H be a hereditary
class on X. Then for any A ⊆ X, we have γ∗(µ, ν)(A) ⊆ γθ(µ,ν)(A).

Proof. Let x ∈ γ∗(µ, ν)(A). For each µ-open set M containing x, we have c∗ν(M)∩A ̸=
∅. Since c∗ν(M) ⊆ cν(M), it follows that cν(M)∩A ̸= ∅. Therefore, x ∈ γθ(µ,ν)(A), and so
γ∗(µ, ν)(A) ⊆ γθ(µ,ν)(A).

The following example demonstrates that, in general, γ∗(µ, ν)(A) ̸= γθ(µ, ν)(A).

Example 1. Let X = {a, b, c, d}. Consider two generalized topologies: µ = {∅, {b, d}} and
ν = {∅, {a, b}, {b, c}, {a, b, c}}, and a hereditary class H = {∅, {b}} on X.

For a set A = {a, c}, we have cν({b, d}) = X, Mµ = {b, d}, and cν({b, d}) ∩ A ̸= ∅.
Thus, γθ(µ,ν)(A) = X. Since Mµ = {b, d}, it is clear that a, c ∈ γ∗(µ, ν)(A). Noting
that {b, d}∗(H, ν) = {d}, we find c∗ν({b, d}) ∩ A = ∅, hence b, d /∈ γ∗(µ, ν)(A). Therefore,
γ∗(µ, ν)(A) = {a, c} and γ∗(µ, ν)(A) ⊂ γθ(µ,ν)(A).

Corollary 2. Let µ and ν be two GT’s on a nonempty set X and let H be a hereditary
class on X. If H = {∅}, then γ∗(µ, ν)(A) = γθ(µ,ν)(A) for any A ⊆ X.

Theorem 5. Let µ and ν be two GT’s on a nonempty set X, and let H be a hereditary
class on X. For any subsets A and B of X, the following properties hold:

(i) γ∗(µ, ν)(∅) = ∅.

(ii) If A ⊆ B, then γ∗(µ, ν)(A) ⊆ γ∗(µ, ν)(B).

(iii) A ⊆ cµ(A) ⊆ γ∗(µ, ν)(A).

Proof. (1) and (2) are obvious.
(3) For x ∈ cµ(A) and any µ-open set M containing x, we have M ∩ A ̸= ∅. Conse-

quently, c∗ν(M) ∩A ̸= ∅. Therefore, x ∈ γ∗(µ, ν)(A), implying that cµ(A) ⊆ γ∗(µ, ν)(A).

The following example shows that, in general, cµ(A) ̸= γ∗(µ, ν)(A).
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Example 2. Let X = {a, b, c, d}. Consider two generalized topologies: µ = {∅, {a}},
ν =

{
∅, {a, b}, {b, c}, {a, b, c}

}
on X, and a hereditary class H = {∅, {b}}.

For a set A = {b, c, d}, since A is µ-closed, cµ(A) = A. Given Mµ = {a}, it follows
by the definition of the operator γ∗(µ, ν) that X −Mµ = {b, c, d} ⊆ γ∗(µ, ν)(A).

Next, we show that a ∈ γ∗(µ, ν)(A). Since M = {a} ∈ µ and {a}∗(H, ν) = {a, d}, we
have c∗ν(M) ∩ A ̸= ∅. Thus, a ∈ γ∗(µ, ν)(A), implying cµ(A) ⊂ γ∗(µ, ν)(A) = X. Thus
cµ(A) ̸= γ∗(µ, ν)(A).

The following Corollary follows immediately from Theorem 5(iii), and Theorem 1.

Corollary 3. Let µ and ν be two GT’s on a nonempty set X, and H a hereditary class
on X. For A ⊆ X, A∗ ⊆ c∗µ(A) ⊆ γ∗(µ, ν)(A).

Theorem 6. Let µ and ν be two GT’s on a nonempty set X, H a hereditary class on X,
and A ⊆ X. Then γ∗(µ, ν)(A) is µ-closed.

Proof. Let x ∈ X − γ∗(µ, ν)(A). This means there exists Mx ∈ µ such that c∗ν(Mx) ∩
A = ∅. Since Mx ⊆ c∗ν(Mx), it follows that Mx ∩ A = ∅. Therefore, every y ∈ Mx

implies y ∈ X − γ∗(µ, ν)(A), implying X − γ∗(µ, ν)(A) =
⋃

x∈X−γ∗(µ,ν)(A)Mx. Thus,
X − γ∗(µ, ν)(A) is µ-open, hence γ∗(µ, ν)(A) is µ-closed.

Theorem 7. Let µ and ν be two GT’s on a nonempty set X, and H a hereditary class
on X. If A is ν-open in X, then γ∗(µ, ν)(A) = cµ(A).

Proof. From (iii) of Theorem 5, we have cµ(A) ⊆ γ∗(µ, ν)(A).
For the converse inclusion, suppose x ∈ γ∗(µ, ν)(A). For each M ∈ µ such that x ∈ M

and c∗ν(M) ∩ A ̸= ∅. Since c∗ν(M) ⊆ cν(M), it follows that cν(M) ∩ A ̸= ∅. Thus, there
exists y ∈ cν(M) ∩ A. Since A is ν-open and contains y, we have M ∩ A ̸= ∅, implying
x ∈ cµ(A). Therefore, γ∗(µ, ν)(A) ⊆ cµ(A). Combining this with the earlier inclusion, we
conclude γ∗(µ, ν)(A) = cµ(A).

The following Corollary follows from Lemma 1(ii) and Theorem 7.

Corollary 4. Let µ and ν be two GT’s on a nonempty set X, H a hereditary class on X,
and A ⊆ X. If A ∈ ν, then

γ∗(µ, ν)(A) = cµ(A) = γθ(µ,ν)(A).

4. H
(
θ(µ, ν)

)
-Open Sets

Definition 3. Let µ and ν be two GT’s on a nonempty set X, and let H be a hereditary
class on X. We define the collection H

(
θ(µ, ν)

)
⊆ P(X) such that A ∈ H

(
θ(µ, ν)

)
if and

only if for each x ∈ A, there exists M ∈ µ such that x ∈ M ⊆ c∗ν(M) ⊆ A.

The elements ofH
(
θ(µ, ν)

)
are called mixedH

(
θ(µ, ν)

)
-open (briefly, H

(
θ(µ, ν)

)
-open)

, and their complements are called mixed H
(
θ(µ, ν)

)
-closed (briefly, H

(
θ(µ, ν)

)
-closed).
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Remark 1. Consider µ and ν to be two GT’s on a nonempty set X, and let H be a
hereditary class on X. If µ = ν, then H

(
θ(µ, ν)

)
= H(θ).

Theorem 8. Let µ and ν be two GT’s on a nonempty set X, and let H be a hereditary
class on X. Then θ(µ, ν) ⊆ H

(
θ(µ, ν)

)
⊆ µ.

Proof. To show that θ(µ, ν) ⊆ H
(
θ(µ, ν)

)
, let A ∈ θ(µ, ν) and x ∈ A. Then there

exists M ∈ µ such that x ∈ M ⊆ cν(M) ⊆ A. Since c∗ν(M) ⊆ cν(M), we have x ∈ M ⊆
c∗ν(M) ⊆ A. Therefore, A is an H

(
θ(µ, ν)

)
-open set.

Next, to show that H
(
θ(µ, ν)

)
⊆ µ, suppose A ∈ H

(
θ(µ, ν)

)
and let x ∈ A. Then there

exists a µ-open set Mx such that x ∈ Mx ⊆ c∗ν(Mx) ⊆ A. Therefore, A =
⋃

x∈AMx ∈ µ.

Remark 2. Based on Theorem 8, we can illustrate the following diagram.

The following example demonstrates that the above implications are not reversible in
general.

Example 3. Let X = {a, b, c, d}. Consider two generalized topologies µ =
{
∅, {a, b}, {b, c}, {a, b, c}

}
and ν =

{
∅, {b, d}

}
and a hereditary class H =

{
∅, {b}

}
. Note that:

(i) For a set A = {a, b, c}, we have Ma = Mb = {a, b} ∈ µ and Mc = {b, c} ∈ µ.
Then M∗

a (H, ν) = M∗
b (H, ν) = M⋆

c (H, ν) = {a, c} and c∗v(Ma) = c∗v(Mb) = c∗v(Mc) =
{a, b, c} ⊆ A;

(ii) Since cν({a, b}) = cν({b, c}) = cν({a, b, c}) = X ⊈ A, then θ(µ, ν) = {∅}.

(iii) From (1) and (2), we show that the set A is H
(
θ(µ, ν)

)
-open but it is not θ(µ, ν)-open.

Also, it is easy to check that B = {a, b} is µ-open but it is not H
(
θ(µ, ν)

)
-open.

Theorem 9. Let µ and ν be two GTs on a nonempty set X, and H be a hereditary class
on X. Then the family H

(
θ(µ, ν)

)
is a GT contained in µ on X.

Proof. Firstly, ∅ ∈ H
(
θ(µ, ν)

)
is obvious. Now, let {Aα ⊆ X : Aα ∈ H

(
θ(µ, ν)

)
} for

α ∈ Λ. Consider x ∈ ∪αAα. Then there exists some α0 ∈ Λ such that for some µ-open set
M containing x, we have M ⊆ c∗ν(M) ⊆ Aα0 . This implies there exists x ∈ M ∈ µ such
that M ⊆ c∗ν(M) ⊆ ∪αAα and so ∪αAα ∈ H

(
θ(µ, ν)

)
.

Theorem 10. Let µ and ν be two GT’s on a nonempty set X, H a hereditary class on
X, and A ⊆ X. Then, A is H(θ(µ, ν))-closed if and only if γ∗(µ, ν)(A) = A.
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Proof. Let A be H
(
θ(µ, ν)

)
-closed in X. Since X−A ∈ H

(
θ(µ, ν)

)
, for each x ∈ X−A,

there exists M ∈ µ such that x ∈ M ⊆ c∗ν(M) ⊆ X − A. Thus, c∗ν(M) ∩ A = ∅, implying
x /∈ γ∗(µ, ν)(A). Therefore, γ∗(µ, ν)(A) ⊆ A, implying that γ∗(µ, ν)(A) = A.

For the reverse inclusion, suppose γ∗(µ, ν)(A) = A and let x ∈ X−A = X−γ∗(µ, ν)(A).
Then there exists M ∈ µ such that x ∈ M and c∗ν(M)∩A = ∅. Hence, x ∈ M ⊆ c∗ν(M) ⊆
X −A, showing that X −A is H

(
θ(µ, ν)

)
-open. Therefore, A is H

(
θ(µ, ν)

)
-closed.

From Theorem 10 and Theorem 7, the following Corollary is directly obtained.

Corollary 5. Let µ and ν be two GT’s on a nonempty set X, H a hereditary class on X,
and A ⊆ X be H

(
θ(µ, ν)

)
-closed. If A ∈ ν, then A is µ-closed.

Definition 4. Let µ and ν be two GT’s on a nonempty set X, and H a hereditary class
on X. The H

(
θ(µ, ν)

)
-closure of A ⊆ X, denoted by cHθ(µ,ν)(A), is the intersection

of all H
(
θ(µ, ν)

)
-closed sets containing A. The H

(
θ(µ, ν)

)
-interior of A, denoted by

iH(θ(µ,ν))(A), is the union of all H
(
θ(µ, ν)

)
-open sets contained in A.

Theorem 11. Let µ and ν be two GT’s on a nonempty set X, and let H be a hereditary
class on X. Then γ∗(µ, ν)(A) ⊆ cHθ(µ,ν)(A).

Proof. Let x /∈ cHθ(µ,ν)(A). Then there exists an H
(
θ(µ, ν)

)
-open set W containing x

such that W ∩ A = ∅. Since W ∈ H
(
θ(µ, ν)

)
, there exists M ∈ µ containing x such that

x ∈ M ⊆ c∗ν(M) ⊆ W ⊆ X − A. This implies c∗ν(M) ∩ A = ∅ and hence x /∈ γ∗(µ, ν)(A).
Therefore, γ∗(µ, ν)(A) ⊆ cHθ(µ,ν)(A).

Definition 5. Let µ and ν be two GTs on a nonempty set X, and let H be a hereditary
class on X. A subset A ⊆ X is called H(µ, ν)-regular open (briefly, Hr(µ, ν)-open) if
A = iµ(c

∗
ν(A)). Similarly, A is called H(µ, ν)-regular closed (briefly, Hr(µ, ν)-closed) if

cµ(i
∗
ν(A)) = A.

Theorem 12. Let µ and ν be two GTs on a nonempty set X, H a hereditary class on X,
and A ⊆ X. If A ∈ H

(
θ(µ, ν)

)
and x ∈ A, then there exists a Hr(µ, ν)-open set U such

that x ∈ U ⊆ c∗ν(U) ⊆ A.

Proof. Since A ∈ H
(
θ(µ, ν)

)
and x ∈ A, there exists a µ-open set M such that

x ∈ M ⊆ c∗ν(M) ⊆ A. Define U = iµ
(
c∗ν(M)

)
. Then U is Hr(µ, ν)-open, M ⊆ U , and

c∗ν(U) = c∗ν
(
iµ
(
c∗ν(M)

))
⊆ c∗ν(M). This implies x ∈ M ⊆ U ⊆ c∗ν(U) ⊆ c∗ν(M) ⊆ A. Thus,

we have x ∈ U ⊆ c∗ν(U) ⊆ A for some Hr(µ, ν)-open set U .

Since everyH(µ, ν)-regular open set is µ-open inX, the following Corollary is evidently
obtained.

Corollary 6. Let µ and ν be two GT’s on a nonempty set X, H a hereditary class on X,
and A ⊆ X. Then, A ∈ H

(
θ(µ, ν)

)
and x ∈ A if and only if there exists a Hr(µ, ν)-open

set U such that x ∈ U ⊆ c∗ν(U) ⊆ A.
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Definition 6. Let µ and ν be two GT’s on a nonempty set X, and let H be a hereditary
class on X. A set X is said to be H(µ, ν)-regular (or simply H(µ, ν)-regular) if for every
x ∈ X and every µ-closed set F with x /∈ F , there exist sets U ∈ µ, V ∈ ν∗ such that:

x ∈ U, F ⊆ V, and U ∩ V = ∅.

Theorem 13. Let µ and ν be GT’s on a nonempty set X, and H a hereditary class on
X. Then X is H(µ, ν)-regular if and only if for every x ∈ X and every µ-open set U
containing x, there exists a µ-open set V containing x such that x ∈ V ⊆ c∗ν(V ) ⊆ U .

Proof. Assume X is H(µ, ν)-regular. For x ∈ X and a µ-open set U containing x, there
exist disjoint sets V ∈ µ andW ∈ ν∗ such that x ∈ V , (X−U) ⊆ W . Since V ⊆ X−W and
X−W is ν∗-closed, we have c∗ν(V ) ⊆ X−W . This implies c∗ν(V )∩(X−U) ⊆ c∗ν(V )∩W = ∅,
hence x ∈ V ⊆ c∗ν(V ) ⊆ U .

Conversely, suppose F is a µ-closed set and x /∈ F for x ∈ X. Since X −F is a µ-open
set containing x, by hypothesis, there exists a µ-open set V containing x such that x ∈ V ,
V ⊆ c∗ν(V ) ⊆ X − F , c∗ν(V ) ∩ F = ∅, and F ⊆ X − c∗ν(V ). As X − c∗ν(V ) ∈ ν∗ and
V ∩

(
X − c∗ν(V )

)
= ∅, it follows that X is H(µ, ν)-regular.

Remark 3. Let µ and ν be two GT’s on a nonempty set X, and let H be a hereditary
class on X such that µ = ν. If X is H(µ, ν)-regular, then X is also H-regular.

Proposition 1. Let µ and ν be two GT’s on a nonempty set X, and H a hereditary class
on X. If X is (µ, ν)-regular, then X is H(µ, ν)-regular.

Proof. Let X be (µ, ν)-regular. Consider x ∈ X and an µ-closed set F such that
x /∈ F . Then X − F is a µ-open set containing x. By Theorem 3, there exists a µ-open
set V containing x such that

x ∈ V ⊆ cν(V ) ⊆ X − F.

Since c∗ν(V ) ⊆ cν(V ), it follows that

x ∈ V ⊆ c∗ν(V ) ⊆ X − F.

By Theorem 13, X is H(µ, ν)-regular.

Theorem 14. Let µ and ν be two GT’s on a nonempty set X, and let H be a hereditary
class on X. If X is H(µ, ν)-regular, then the following hold:

(i) For any A ⊆ X, γ∗(µ, ν)(A) = cµ(A).

(ii) Every µ-open set is H(θ(µ, ν))-open.



F. Alsharari, A. Qahis / Eur. J. Pure Appl. Math, 18 (2) (2025), 5782 9 of 10

Proof. (1) By Theorem 5(iii), we have cµ(A) ⊆ γ∗(µ, ν)(A). To show the reverse inclu-
sion, let x ∈ γ∗(µ, ν)(A) and let U be any µ-open set containing x. FromH(µ, ν)-regularity,
there exists a µ-open set V such that x ∈ V ⊆ c∗ν(V ) ⊆ U . Since x ∈ γ∗(µ, ν)(A), it follows
that c∗ν(V ) ∩A ̸= ∅. Thus, U ∩A ̸= ∅, implying x ∈ cµ(A).

(2) Let M be a µ-open set. From (1), we have γ∗(µ, ν)(X−M) = cµ(X−M) = X−M .
By Theorem 10, X −M is H(θ(µ, ν))-closed, which means M is H(θ(µ, ν))-open.

The next result follows from Theorem 8 and Theorem 14(ii).

Corollary 7. Let µ and ν be two GT’s on a nonempty set X, and let H be a hereditary
class on X. If X is H(µ, ν)-regular, then µ = H(θ(µ, ν)).

Definition 7. Let µ and ν be two GT’s on a nonempty set X, and let H be a hereditary
class on X. We define the following notions:

ℓH(θ(µ,ν))(A) = {x ∈ X : c∗ν(M) ⊆ A for some µ-open set M containing x}.

ℓθ(µ,ν))(A) = {x ∈ X : cν(M) ⊆ A for some µ-open set M containing x}.

ℓH(θ)(A) = {x ∈ X : c∗µ(M) ⊆ A for some µ-open set M containing x}.

Proposition 2. For any two GT’s ν1 and ν2 on a nonempty set X, we have ℓθ(ν1,ν2)(A) ⊆
ℓH(θ(µ,ν))(A) for any A ⊆ X.

Proof. Let x ∈ ℓθ(µ,ν)(A). Then there exists a µ-open set M containing x such that
cν(M) ⊆ A. Since c∗ν(M) ⊆ cν(M), it follows that c∗ν(M) ⊆ A. Therefore, x ∈ ℓH(θ(µ,ν))(A).

Remark 4. Let µ and ν be two GTs on a nonempty set X, and let A ⊆ X. If µ = ν,
then ℓH(θ(µ,ν))(A) = ℓH(θ)(A).

Theorem 15. Let ν1 and ν2 be two GT’s on a nonempty set X and A ⊆ X. Then the
following properties hold:

(i) iH(θ(µ,ν)(A) = X − cH(θ(µ,ν)(X −A) and cH(θ(µ,ν)(A) = X − iH(θ(µ,ν)(X −A).

(ii) ℓH(θ(µ,ν)(A) = X − γ∗(µ, ν)(X −A) and γ∗(µ, ν)(A) = X − ℓH(θ(µ,ν)(X −A).

Proof. The proof is obvious.

The following Corollary comes directly from Definition 4 and Definition 7.

Corollary 8. Let µ and ν be two GTs on a nonempty set X and A ⊆ X. Then
iH(θ(µ,ν))(A) if and only if there exists a µ-open set M containing x such that M ⊆ c∗ν(M) ⊆
A.
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5. Conclusion

This study aimed to introduce and examine the operation γ∗(µ, ν) and H
(
θ(µ, ν)

)
-

open sets within generalized topological spaces. Several significant results regarding these
concepts were established. We thoroughly investigated the relationships among γ∗(µ, ν),
γ∗, and the µ-closure, as well as those among H

(
θ(µ, ν)

)
-open sets, θ(µ, ν)-open sets,

and µ-open sets. Finally, we have derived various properties and characterizations of
H
(
θ(µ, ν)

)
-open sets in terms of the concept of H(µ, ν)-regularity.
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[6] Ákos Császár. Modification of generalized topologies via hereditary classes. Acta
Mathematica Hungarica, 115(1-2):29–36, 2007.

[7] Akos Császár. Generalized open sets in generalized topologies. Acta mathematica
hungarica, 106, 2005.
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