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Abstract. Many applications in engineering cannot be solved analytically, major difficulty in the
study of partial differential equations is that it is often impossible to obtain analytical solutions.
Therefore, various numerical methods for solving partial differential equations have been proposed
by related researchers, such as the finite difference method (FDM), finite element method (FEM),
finite volume method (FVM), etc. The earliest is the FDM,which approximates the differential
equations by using a local Taylor expansion. The finite element method (FEM) is a numerical
technique for solving problems which are described by partial differential equations or can be
formulated as functional minimization. A domain of interest is represented as an assembly of
finite elements.This paper presents a qualitative comparative study of FDM and Galerkin finite
element method (GFEM) to show the advantages and disadvantages of these methods in solving
boundary value problems. Several numerical experiments conducted for comparisons purpose. The
results reveal that the GFEM is an alternative method for solving several types of boundary value
problems.
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1. Introduction

There are several applications of Poisson’s equation in both engineering and physics.
It is employed to resolve issues in fluid dynamics, quantum mechanics, electrostatics, and
magnetostatics. Poisson’s equation connects the electric potential to the charge distribu-
tion in electrostatics. It connects the magnetic potential to the current distribution in
magnetostatics. For scientists and engineers investigating the behavior of physical sys-
tems, the equation is a crucial tool [1–3].
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The complexity of many differential equations that arise in applications makes it occasion-
ally impracticable to have solution formulae; if one is available, it may include integrals
that can only be computed via a numerical quadrature formula. Numerical techniques
offer a potent substitute tool for resolving differential equations under the specified ini-
tial condition or conditions in either scenario. The finite difference method (FDM), finite
element method (FEM), and finite volume method (FVM) are the three traditional op-
tions for numerically solving PDEs. The earliest is the FDM, which approximates the
differential equations by using a local Taylor expansion [1, 2]. The discretization of the
PDE is constructed by the FDM using a topologically square network of lines. This might
be a method’s bottleneck when working with intricate geometries in several dimensions .
This difficulty encouraged the adoption of an integral form of the PDEs, followed by the
development of the finite element and finite volume approaches [3–5].
discretization to approximate differential equation solutions. This method converts con-
tinuous functions into discrete ones, simplifying calculation and analysis. It is commonly
used in domains with differential equations, including physics, engineering, and finance.
There are three forms of finite difference approximations: forward difference, backward
difference, and central difference. The forward difference method estimates the derivative
by comparing the value of the function at one point to the next. The backward difference
compares the values at the present and prior points. The central difference is a more
accurate estimate since it averages the forward and backward differences. Among the nu-
merical techniques developed over many decades is the FDM. The technique can be used
to solve partial differential equations by approximating them with the Taylor series [6, 7].
On the other hand, the FEM is a numerical technique typically employed to resolve differ-
ential equations containing boundary conditions. Using a sufficient set of basis functions,
the FEM approximates the solution of the differential equation on the domain by dividing
it into a finite number of smaller areas known as elements. Nowadays, a lot of problems
in multiphysics, fluids, and structures are solved numerically using FEMs. Because scien-
tists and engineers can model and solve extremely complicated problems numerically and
mathematically, the approach is widely used [8–10]. Engineering analyses are used to eval-
uate designs, while scientific analyses are conducted primarily to gain an understanding of
and, ideally, forecast natural events. It is very valuable to forecast how a design will work
and whether and how a natural occurrence will occur. By doing so, designs can be made
safer and more economical, and knowledge of the ability to predict nature can assist, for
instance, in preventing tragedies. Therefore, using the FEM significantly improves our
quality of life [11–13].
The Galerkin Finite Element Method (GFEM) divides the domain into finite elements in
order to produce a numerical solution to a differential equation. Piecewise trial functions
over each of these elements are used to approximate the function . The GFEM for the
solution of a differential equation consists of the following steps [14, 15]:

1 multiply the differential equation by a weight function ω(x) and form the integral
over the whole domain.
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2 if necessary, integrate by parts to reduce the order of the highest order term.

3 choose the order of interpolation (e.g. linear, quadratic, etc.) and corresponding

shape functions Ni, i = 1...m, with trial function p = p̃(x) =
m∑
i=1

Ni(x)pi.

4 evaluate all integrals over each element, either exactly or numerically, to set up a
system of equations in the unknown pi′s.

5 solve the system of equations for the pi′s.

This work will be focus on the applications of GFEM and compare it with the FDM
to check more superiority method. This paper organized 5 sections. Section 2, introduced
a brief description of the FDM. Section 3, presented the formulations of the GFEM for
solving PDEs of elliptic type. Section 4 includes the numerical experiments and the
comparison between these two method. The paper ends with conclusion and final remarks.

2. Finite difference Method

The Poisson’s equation in two-dimension can be written as [16–18].

∂2u

∂x2
+

∂2u

∂y2
= g(x, y) (1)

along the boundary C with the boundary condition u = f(x, y) .
Here, we also made the assumption that the mesh points are uniform in both the x and
y dimensions. With this presumption, the equation (1) central difference approximation
can be simplified to

ui,j =
1

4
(ui+1,j + ui−1,j + ui,j+1 + ui,j−1 − h2gi,j)

where gi,j = g(xi, yi).
This formula is known as standard five-point formula. Let u = 0 along the boundary C
and i, j = 0, 1, 2, 3, 4. Then u0,j = 0, u4,j = 0, for j = 0, 1, 2, 3, 4.and ui,0 = 0, ui,4 = 0 for
i = 0, 1, 2, 3, 4. The boundary values (filled circles) are shown in Figure 1.
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Figure 1: Mesh points of FDM.

For a particular case, i.e. for i, j = 0, 1, 2, 3. the equation (1) becomes a system of nine
equations with nine unknowns. These equations are written in matrix notation as

4 −1 0 −1 0 0 0 0 0
−1 4 −1 0 −1 0 0 0 0
0 −1 4 0 0 −1 0 0 0
−1 0 0 4 −1 0 −1 0 0
0 −1 0 −1 4 −1 0 −1 0
0 0 −1 0 −1 4 0 0 −1
0 0 0 −1 0 0 4 −1 0
0 0 0 0 −1 0 −1 4 −1
0 0 0 0 0 −1 0 −1 4





u1,1
u1,2
u1,3
u2,1
u2,2
u2,3
u3,1
u3,2
u3,3


=



−h2g1,1
−h2g1,2
−h2g1,3
−h2g2,1
−h2g2,2
−h2g2,3
−h2g3,1
−h2g3,2
−h2g3,3


As a result, equation (1) formed a system of N equations, where n is the number of
subintervals along the x and y axes. The coefficient matrix is symmetric, sparse (many
elements are 0), and positive definite. The preceding system of equations should be solved
iteratively rather than directly because the coefficient matrix is sparse. .

Constructing exact and numerical solutions of partial differential equations (PDEs)
has become an active area in recent years. Several applications of PDEs have been devel-
oped over the years, such as in the theory of heat-magneto-photothermal and magnetic
fields. There are many complex problems in mathematics and physics that involve the
use of PDEs. These problems can be quite challenging to solve due to their intricate
nature. Traditional methods might not always be sufficient, so alternative methods are
often employed to find solutions. [19–21]

3. Galerkin Finite element Method

Let us considered the model problem: Poisson equation with homogenous Dirichlet
boundary conditions [22, 23]

−∆u = f in Ω (2)

u = 0 on ∂Ω
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Multiply a test function v, integrate over Ω, and use integration by parts to obtain
the corresponding variational formulation: Find u ∈ V = H1

0 (Ω) := {v ∈ L2(Ω)|∇v ∈
L2(Ω), v|Γ = 0} such that

a(u, v) = (f, v), for all v ∈ V, (3)

Where

a(u, v) =

∫
Ω
∇u∇v dx, (f, v) =

∫
Ω
fv dx for all f ∈ L2(Ω) (4)

Clearly, in such case a(·, ·) is bilinear and symmetric, and a(u, u) = |u|21,Ω := ||u||2 Fur-
thermore a(u, u) = 0 implies ∇u = 0 and consequently u is constant. As u|Γ = 0, this
constant should be zero. Therefore a(·, ·) defines an inner product on V , and thus the
problem (2) has a unique solution by the Riesz representation theorem. We now consider a
class of methods, known as Galerkin methods which are used to approximate the solution
to (2). Consider a finite dimensional subspace Vh ⊂ V . Restrict the variational form in
the subspace Vh , i.e., find uh ∈ V s.t.

a(uh, vh) = (f, vh), for all vh ∈ V (5)

Let Vh = span{φ1, φ2, ..., φN} For any function v ∈ Vh , there is a unique representation:
v =

∑N
i=1 viφi We thus can define an isomorphism Vh

∼= RN by

v =
N∑
i=1

viφi ←→ v = (v1, ..., vN )T ,

and call v the coordinate vector of v relative to the basis {φ}Ni=1 Following the terminology
in elasticity, we introduce the stiffness matrix

A = (aij)N X N with aij = a(∅j , ∅i)

and the load vector f = {⟨f, φ⟩}Nk=1 ∈ RN Then the variational problem (5) on Vh can be
formulated as the following linear algebraic system

Au = f

By definition, for two functions, vu ∈ Vh , their a(·, ·) -inner product is realized by the
matrix product

a(uh, vh) = a(
∑
i

uiφi,
∑

vjφj) =
∑
i,j

a(φi, φj)uivj = vtAu

Therefore for any vector u ∈ RN , uTAu = a(u, u) ≥ 0 and equals 0 if and only if u is zero.
Namely A is a symmetric positive definite (SPD) matrix and thus the solution u = A−1f
exists and unique. After we get the coefficient vector u , uh can be obtained by linear
combination of basis functions. The finite element method, a prominent and widely-used
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example of Galerkin methods, constructs a finite-dimensional subspace Vh based on trian-
gulations τh of the domain. The name comes from the fact that the domain is decomposed
into finite number of elements. Usually piecewise polynomials are used to define a finite
dimensional space.

4. Numerical experiments

Consider Poisson equation
∂2u

∂x2
+

∂2u

∂y2
= xy (6)

Subject to the boundary conditions u(x, 0) = 0, u(x, 2) = 0, u(0, y) = 0, u(2, y) = 0.
The analytical solution of the PDE is

u =
∑
m≥1

∑
n≥1

−16
π2

(−1)n+m

nmλnm
sin(

nπx

2
) sin(

mπy

2
) (7)

Table 1 shows the approximations solutions of GFEM and FDM with the analytical so-
lution of the proposed problem. The results reveal that GFEM works will better than
FDM because the approximation solutions resulted from GFEM close to the analytical
solutions.

Table 1: Comparison results of the approximation solutions from FDM, GFEM and the analytical solution of
the proposed problem.

NODES FDM GFEM Analytical Solution

1 0 0 0
2 −0.119349193976091 −0.122668821548822 −0.1226832533
3 −0.11477288471148 −0.117143703703704 −0.1176222268
4 −0.119349193976091 −0.122668821548822 −0.1226832533
5 −0.216687033077673 −0.221429225589226 −0.222990496
6 −0.213255170322128 −0.216574276094276 −0.2194532299
7 −0.262825492159407 −0.267567407407407 −0.2707333253

Table 2: Absolute errors of the FDM for solving the proposed problem.

NODES FDM Analytical Solution Absolute error

1 0 0 0
2 −0.119349193976091 −0.1226832533 0.003334059324
3 −0.11477288471148 −0.1176222268 0.002849342089
4 −0.119349193976091 −0.1226832533 0.003334059324
5 −0.216687033077673 -0.222990496 0.006303462922
6 −0.213255170322128 −0.2194532299 0.006198059578
7 −0.262825492159407 −0.2707333253 0.007907833141
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Table 3: Absolute errors of the GFEM for solving the proposed problem.

NODES GFEM Analytical Solution Absolute error

1 0 0 0
2 −0.122668821548822 −0.1226832533 −0.00001443175118
3 −0.117143703703704 −0.1176222268 −0.0004785230963
4 −0.122668821548822 −0.1226832533 −0.00001443175118
5 −0.221429225589226 −0.222990496 −0.001561270411
6 −0.216574276094276 −0.2194532299 −0.002878953806
7 −0.267567407407407 −0.2707333253 −0.003165917893

Tables 2 and 3 show the absolute error in the case of FDM and GFEM. We can observe
that the absolute errors of GFEM smaller than FDM which implies that the GFEM has
more accuracy than FDM.

Figure 2: Comparison between the approximation solution by FDM and analytical solution.

Figure 3: Comparison between the approximation solution by GFEM and analytical solution.

From figures 2 and 3 we can observe that the error associated with the FDM is higher
compared to that of the GFEM.

Figures 4,5 and 6 show clearly the absolute errors of FDM and GFEM with the analyti-
cal solution and it is noticeable that the GFEM works better than FDM and approximation
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solution from GFEM is very close to the analytical solution which support our result.

Figure 4: Graph of the numerical solution of Poisson equation Using FDM.

Figure 5: Graph of the numerical solution of Poisson equation Using GFEM.
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Figure 6: Graph of the analytical solution.

5. Conclusion

In this paper, we have applied Galerkin finite element method for solving Poisson
equation, the numerical experiments conducted on both GFEM and FDM for comparison
purpose. The results reveal that the GFEM is more superior than FDM depends on its
accuracy. We conclude that GFEM is a good alternative method for solving PDEs of
elliptic types and we can extend this work for solving several types of equations which
applied for many fields of engineering, fluid dynamics. . . etc.
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