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Abstract. This paper presents new classes of multifunctions between bitopological spaces, namely
upper contra-(τ1, τ2)-continuous multifunctions and lower contra-(τ1, τ2)-continuous multifunctions.
Moreover, several characterizations and some properties concerning upper contra-(τ1, τ2)-continuous
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1. Introduction

Weaker and stronger forms of open sets in topological spaces such as semi-open sets,
preopen sets, α-open sets, β-open sets, δ-open sets and θ-open sets play an important
role in the researches of generalizations of continuity. By using these sets many au-
thors introduced and investigated various types of continuity. Viriyapong and Boon-
pok [1] investigated some characterizations of (Λ, sp)-continuous functions by utilizing
the notions of (Λ, sp)-open sets and (Λ, sp)-closed sets due to Boonpok and Khampakdee
[2]. Dungthaisong et al. [3] introduced and studied the concept of g(m,n)-continuous

functions. Duangphui et al. [4] introduced and investigated the notion of (µ, µ′)(m,n)-
continuous functions. Furthermore, several characterizations of almost (Λ, p)-continuous
functions, strongly θ(Λ, p)-continuous functions, almost strongly θ(Λ, p)-continuous func-
tions, θ(Λ, p)-continuous functions, weakly (Λ, b)-continuous functions, θ(⋆)-precontinuous
functions, (Λ, p(⋆))-continuous functions, ⋆-continuous functions, θ-I -continuous func-
tions, almost (g,m)-continuous functions, pairwise almostM -continuous functions, (τ1, τ2)-
continuous functions, almost (τ1, τ2)-continuous functions, weakly (τ1, τ2)-continuous func-
tions and slightly (τ1, τ2)s-continuous functions were presented in [5], [6], [7], [8], [9],
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[10], [11], [12], [13], [14], [15], [16], [17], [18] and [19], respectively. Kong-ied at al. [20]
introduced and studied the concept of almost quasi (τ1, τ2)-continuous functions. Chi-
angpradit et al. [21] introduced and investigated the notion of weakly quasi (τ1, τ2)-
continuous functions. Thongmoon et al. [22] introduced and studied the notion of rarely
(τ1, τ2)-continuous functions. Srisarakham et al. [23] introduced and investigated the
concept of faintly (τ1, τ2)-continuous functions. On the other hand, the present au-
thors introduced and studied the notions of δ(τ1, τ2)-continuous functions [24], quasi
θ(τ1, τ2)-continuous functions [25], almost weakly (τ1, τ2)-continuous functions [26] and
almost nearly (τ1, τ2)-continuous functions [27]. In 1966, Dontchev [28] introduced the
notion of contra-continuity in topological spaces. Dontchev and Noiri [29] introduced and
studied the concept of RC-continuity between topological spaces which is weaker than
contra-continuity. Jafari and Noiri [30] introduced a new class of function called contra-
precontinuous functions which is weaker than contra-continuous functions and studied
several basic properties of contra-precontinuous functions. Ekici [31] introduced and stud-
ied a new class of functions called almost contra-precontinuous functions which gener-
alize classes of regular set-connected functions [32], contra-precontinuous functions [30],
contra-continuous functions [28], almost s-continuous functions [33] and perfectly contin-
uous functions [34].

In 2008, Ekici et al. [35] extended the notion of contra-continuous functions to the
setting of multifunctions. Noiri and Popa [36] introduced the notion of weakly precon-
tinuous multifunctions. Moreover, several characterizations and some properties concern-
ing (τ1, τ2)δ-semicontinuous multifunctions, almost weakly (τ1, τ2)-continuous multifunc-
tions, weakly quasi (Λ, sp)-continuous multifunctions, ⋆-continuous multifunctions, β(⋆)-
continuous multifunctions, α-⋆-continuous multifunctions, almost α-⋆-continuous multi-
functions, almost quasi ⋆-continuous multifunctions, weakly α-⋆-continuous multifunc-
tions, sβ(⋆)-continuous multifunctions, weakly sβ(⋆)-continuous multifunctions, θ(⋆)-quasi
continuous multifunctions, almost ı⋆-continuous multifunctions, weakly (Λ, sp)-continuous
multifunctions, α(Λ, sp)-continuous multifunctions, almost α(Λ, sp)-continuous multifunc-
tions, weakly α(Λ, sp)-continuous multifunctions, almost β(Λ, sp)-continuous multifunc-
tions, slightly (Λ, sp)-continuous multifunctions, (τ1, τ2)-continuous multifunctions, al-
most (τ1, τ2)-continuous multifunctions, weakly (τ1, τ2)-continuous multifunctions, weakly
quasi (τ1, τ2)-continuous multifunctions, almost quasi (τ1, τ2)-continuous multifunctions,
c-(τ1, τ2)-continuous multifunctions, c-quasi (τ1, τ2)-continuous multifunctions, s-(τ1, τ2)p-
continuous multifunctions, slightly α(τ1, τ2)-continuous multifunctions and slightly (τ1, τ2)p-
continuous multifunctions were established in [37], [38], [39], [40], [41], [42], [43], [44], [45],
[46], [47], [48], [49], [50], [51], [52], [53], [54], [55], [56], [57], [58], [59], [60], [61], [62], [63],
[64] and [65], respectively. On the other hand, the present authors introduced and investi-
gated the notions of rarely s-(τ1, τ2)p-continuous multifunctions [66], almost nearly (τ1, τ2)-
continuous multifunctions [67], s-(τ1, τ2)-continuous multifunctions [68], quasi θ(τ1, τ2)-
continuous multifunctions [69], almost nearly quasi (τ1, τ2)-continuous multifunctions [70],
weakly s-(τ1, τ2)-continuous multifunctions [71], nearly (τ1, τ2)-continuous multifunctions
[72] and almost quasi (τ1, τ2)-continuous multifunctions [73]. Ekici et al. [74] introduced
and studied two new concepts namely contra-precontinuous multifunctions and almost
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contra-precontinuous multifunctions which are containing the class of contra-continuous
multifunctions [35] and contained in the class of weakly precontinuous multifunctions.
Ekici et al. [75] introduced and studied a new generalization of contra-continuous multi-
functions called almost contra-continuous multifunctions. Recently, the present authors
[76] introduced and investigated the notions of upper almost contra-(Λ, sp)-continuous
multifunctions and lower almost contra-(Λ, sp)-continuous multifunctions. In this paper,
we introduce the concepts of upper contra-(τ1, τ2)-continuous multifunctions and lower
contra-(τ1, τ2)-continuous multifunctions. We also investigate several characterizations of
upper contra-(τ1, τ2)-continuous multifunctions and lower contra-(τ1, τ2)-continuous mul-
tifunctions.

2. Preliminaries

Throughout the present paper, spaces (X, τ1, τ2) and (Y, σ1, σ2) (or simply X and
Y ) always mean bitopological spaces on which no separation axioms are assumed unless
explicitly stated. Let A be a subset of a bitopological space (X, τ1, τ2). The closure of A
and the interior of A with respect to τi are denoted by τi-Cl(A) and τi-Int(A), respectively,
for i = 1, 2. A subset A of a bitopological space (X, τ1, τ2) is called τ1τ2-closed [77]
if A = τ1-Cl(τ2-Cl(A)). The complement of a τ1τ2-closed set is called τ1τ2-open. The
intersection of all τ1τ2-closed sets of X containing A is called the τ1τ2-closure [77] of A
and is denoted by τ1τ2-Cl(A). The union of all τ1τ2-open sets of X contained in A is called
the τ1τ2-interior [77] of A and is denoted by τ1τ2-Int(A).

Lemma 1. [77] Let A and B be subsets of a bitopological space (X, τ1, τ2). For the τ1τ2-
closure, the following properties hold:

(1) A ⊆ τ1τ2-Cl(A) and τ1τ2-Cl(τ1τ2-Cl(A)) = τ1τ2-Cl(A).

(2) If A ⊆ B, then τ1τ2-Cl(A) ⊆ τ1τ2-Cl(B).

(3) τ1τ2-Cl(A) is τ1τ2-closed.

(4) A is τ1τ2-closed if and only if A = τ1τ2-Cl(A).

(5) τ1τ2-Cl(X −A) = X − τ1τ2-Int(A).

A subset A of a bitopological space (X, τ1, τ2) is called α(τ1, τ2)-open [78] if A ⊆
τ1τ2-Int(τ1τ2-Cl(τ1τ2-Int(A))). The complement of an α(τ1, τ2)-open set is called α(τ1, τ2)-
closed. A subset A of a bitopological space (X, τ1, τ2) is called (τ1, τ2)r-open [79] (resp.
(τ1, τ2)s-open [37], (τ1, τ2)p-open [37], (τ1, τ2)β-open [37]) if A = τ1τ2-Int(τ1τ2-Cl(A))
(resp. A ⊆ τ1τ2-Cl(τ1τ2-Int(A)), A ⊆ τ1τ2-Int(τ1τ2-Cl(A)), A ⊆ τ1τ2-Cl(τ1τ2-Int(τ1τ2-Cl(A)))).
The complement of a (τ1, τ2)r-open (resp. (τ1, τ2)s-open, (τ1, τ2)p-open, (τ1, τ2)β-open,
α(τ1, τ2)-open) set is called (τ1, τ2)r-closed (resp. (τ1, τ2)s-closed, (τ1, τ2)p-closed, (τ1, τ2)β-
closed, α(τ1, τ2)-closed). Let A be a subset of a bitopological space (X, τ1, τ2). The set
∩{G | A ⊆ G and G is τ1τ2-open} is called the τ1τ2-kernel [77] of A and is denoted by
τ1τ2-ker(A).
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Lemma 2. [77] For subsets A,B of a bitopological space (X, τ1, τ2), the following properties
hold:

(1) A ⊆ τ1τ2-ker(A).

(2) If A ⊆ B, then τ1τ2-ker(A) ⊆ τ1τ2-ker(B).

(3) If A is τ1τ2-open, then τ1τ2-ker(A) = A.

(4) x ∈ τ1τ2-ker(A) if and only if A ∩H ̸= ∅ for every τ1τ2-closed set H containing x.

By a multifunction F : X → Y , we mean a point-to-set correspondence from X into
Y , and we always assume that F (x) ̸= ∅ for all x ∈ X. For a multifunction F : X → Y , we
shall denote the upper and lower inverse of a set B of Y by F+(B) and F−(B), respectively,
that is, F+(B) = {x ∈ X | F (x) ⊆ B} and F−(B) = {x ∈ X | F (x) ∩ B ̸= ∅}. In
particular, F−(y) = {x ∈ X | y ∈ F (x)} for each point y ∈ Y . For each A ⊆ X,
F (A) = ∪x∈AF (x).

3. Upper and lower contra-(τ1, τ2)-continuous multifunctions

In this section, we introduce the concepts of upper contra-(τ1, τ2)-continuous multi-
functions and lower contra-(τ1, τ2)-continuous multifunctions. Furthermore, several char-
acterizations of upper contra-(τ1, τ2)-continuous multifunctions and lower contra-(τ1, τ2)-
continuous multifunctions are discussed.

Definition 1. A multifunction F : (X, τ1, τ2) → (Y, σ1, σ2) is called upper contra-(τ1, τ2)-
continuous at a point x ∈ X if for each σ1σ2-closed set K of Y such that x ∈ F+(K),
there exists a τ1τ2-open set U of X containing x such that U ⊆ F+(K). A multifunction
F : (X, τ1, τ2) → (Y, σ1, σ2) is called upper contra-(τ1, τ2)-continuous if F is upper contra-
(τ1, τ2)-continuous at each point x of X.

Theorem 1. For a multifunction F : (X, τ1, τ2) → (Y, σ1, σ2), the following properties are
equivalent:

(1) F is upper contra-(τ1, τ2)-continuous;

(2) F+(K) is τ1τ2-open in X for every σ1σ2-closed set K of Y ;

(3) F−(V ) is τ1τ2-closed in X for every σ1σ2-open set V of Y ;

(4) for each x ∈ X and each σ1σ2-closed set K of Y containing F (x), there exists a
τ1τ2-open set U of X containing x such that if y ∈ U , then F (y) ⊆ K.

Proof. (1) ⇔ (2): Let K be any σ1σ2-closed set of Y and x ∈ F+(K). Since F is
upper contra-(τ1, τ2)-continuous, there exists a τ1τ2-open set U of X containing x such
that U ⊆ F+(K). Thus, F+(K) is τ1τ2-open in X. The converse of the proof is similar.

(2) ⇔ (3): This follows from the fact that F+(Y −B) = X − F−(B) for every subset
B of Y .

(1) ⇔ (4): Obvious.
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Definition 2. A multifunction F : (X, τ1, τ2) → (Y, σ1, σ2) is called lower contra-(τ1, τ2)-
continuous at a point x ∈ X if for each σ1σ2-closed set K of Y such that x ∈ F−(K),
there exists a τ1τ2-open set U of X containing x such that U ⊆ F−(K). A multifunction
F : (X, τ1, τ2) → (Y, σ1, σ2) is called lower contra-(τ1, τ2)-continuous if F is lower contra-
(τ1, τ2)-continuous at each point x of X.

Theorem 2. For a multifunction F : (X, τ1, τ2) → (Y, σ1, σ2), the following properties are
equivalent:

(1) F is lower contra-(τ1, τ2)-continuous;

(2) F−(K) is τ1τ2-open in X for every σ1σ2-closed set K of Y ;

(3) F+(V ) is τ1τ2-closed in X for every σ1σ2-open set V of Y ;

(4) for each x ∈ X and each σ1σ2-closed set K of Y such that F (x)∩K ̸= ∅, there exists
a τ1τ2-open set U of X containing x such that if y ∈ U , then F (y) ∩K ̸= ∅.

Proof. The proof is similar to that of Theorem 1.

Theorem 3. Let F : (X, τ1, τ2) → (Y, σ1, σ2) be a multifunction. If τ1τ2-Cl(F
−(B)) ⊆

F−(σ1σ2-ker(B)) for every subset B of Y , then F is upper contra-(τ1, τ2)-continuous.

Proof. Suppose that τ1τ2-Cl(F
−(B)) ⊆ F−(σ1σ2-ker(B)) for every subset B of Y . Let

V be any σ1σ2-open set of Y . By Lemma 2, we have

τ1τ2-Cl(F
−(V )) ⊆ F−(σ1σ2-ker(V )) = F−(V )

and hence F−(V ) is τ1τ2-closed inX. By Theorem 1, F is upper contra-(τ1, τ2)-continuous.

Theorem 4. Let F : (X, τ1, τ2) → (Y, σ1, σ2) be a multifunction. If F (τ1τ2-Cl(A)) ⊆
σ1σ2-ker(F (A)) for every subset A of X, then F is lower contra-(τ1, τ2)-continuous.

Proof. Let V be any σ1σ2-open set of Y . Then, F (τ1τ2-Cl(F
+(V ))) ⊆ σ1σ2-ker(V )

and hence τ1τ2-Cl(F
+(V )) ⊆ F+(σ1σ2-ker(V )). By Lemma 2, we have

τ1τ2-Cl(F
+(V )) ⊆ F+(σ1σ2-ker(V )) = F+(V )

and hence F+(V ) is τ1τ2-closed in X. By Theorem 2, F is lower contra-(τ1, τ2)-continuous.

Theorem 5. Let F : (X, τ1, τ2) → (Y, σ1, σ2) be a multifunction. If τ1τ2-Cl(F
+(B)) ⊆

F+(σ1σ2-ker(B)) for every subset B of Y , then F is lower contra-(τ1, τ2)-continuous.

Proof. Let V be any σ1σ2-open set of Y . Then, τ1τ2-Cl(F
+(V )) ⊆ F+(σ1σ2-ker(V ))

and by Lemma 2, τ1τ2-Cl(F
+(V )) ⊆ F+(σ1σ2-ker(V )) = F+(V ). This implies that

F+(V ) is τ1τ2-closed in X. By Theorem 2, F is lower contra-(τ1, τ2)-continuous.
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Definition 3. [6] A multifunction F : (X, τ1, τ2) → (Y, σ1, σ2) is said to be upper weakly
(τ1, τ2)-continuous if for each x ∈ X and each σ1σ2-open set V of Y containing F (x),
there exists a τ1τ2-open set U of X containing x such that F (U) ⊆ σ1σ2-Cl(V ).

Theorem 6. If F : (X, τ1, τ2) → (Y, σ1, σ2) is an upper contra-(τ1, τ2)-continuous multi-
function, then F is upper weakly (τ1, τ2)-continuous.

Proof. Let x ∈ X and V be any σ1σ2-open set of Y containing F (x). Then, σ1σ2-Cl(V )
is a σ1σ2-closed set Y containing F (x). Since F is upper contra-(τ1, τ2)-continuous, by
Theorem 1 there exists a τ1τ2-open set U ofX containing x such that U ⊆ F+(σ1σ2-Cl(V ));
hence F (U) ⊆ σ1σ2-Cl(V ). This shows that F is upper weakly (τ1, τ2)-continuous.

The converse of Theorem 6 is not true in general as shown in the following example.

Example 1. Let X = {a, b, c, d} with topologies τ1 = {∅, {a}, {a, b}, {a, b, c}, X} and
τ2 = {∅, {a}, {a, b}, {a, b, c}, {a, b, d}, X}. Let Y = {1, 2, 3, 4} with topologies

σ1 = {∅, {1}, {1, 2}, {1, 2, 3}, {1, 2, 4}, Y }

and σ2 = {∅, {1}, {1, 2}, {1, 2, 3}, Y }. A multifunction F : (X, τ1, τ2) → (Y, σ1, σ2) is
defined as follows: F (a) = {1, 2}, F (b) = {2}, F (c) = {1, 2} and F (d) = {4}. Then, F is
upper weakly (τ1, τ2)-continuous but F is not upper contra-(τ1, τ2)-continuous.

Definition 4. [6] A multifunction F : (X, τ1, τ2) → (Y, σ1, σ2) is said to be lower weakly
(τ1, τ2)-continuous if for each x ∈ X and each σ1σ2-open set V of Y such that F (x)∩V ̸= ∅,
there exists a τ1τ2-open set U of X containing x such that σ1σ2-Cl(V )∩F (z) ̸= ∅ for each
z ∈ U .

Theorem 7. If F : (X, τ1, τ2) → (Y, σ1, σ2) is a lower contra-(τ1, τ2)-continuous multi-
function, then F is lower weakly (τ1, τ2)-continuous.

Proof. The proof is similar to that of Theorem 6.

Recall that a bitopological space (X, τ1, τ2) is said to be τ1τ2-connected [77] if X cannot
be written as the union of two nonempty disjoint τ1τ2-open sets.

Lemma 3. [6] For a multifunction F : (X, τ1, τ2) → (Y, σ1, σ2), the following properties
are equivalent:

(1) F is upper weakly (τ1, τ2)-continuous;

(2) F+(V ) ⊆ τ1τ2-Int(F
+(σ1σ2-Cl(V ))) for every σ1σ2-open set V of Y ;

(3) τ1τ2-Cl(F
−(σ1σ2-Int(K))) ⊆ F−(K) for every σ1σ2-closed set K of Y ;

(4) τ1τ2-Cl(F
−(σ1σ2-Int(σ1σ2-Cl(B)))) ⊆ F−(σ1σ2-Cl(B)) for every subset B of Y ;

(5) F+(σ1σ2-Int(B)) ⊆ τ1τ2-Int(F
+(σ1σ2-Cl(σ1σ2-Int(B)))) for every subset B of Y ;
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(6) τ1τ2-Cl(F
−(σ1σ2-Int(σ1σ2-Cl(V )))) ⊆ F−(σ1σ2-Cl(V )) for every σ1σ2-open set V of

Y ;

(7) τ1τ2-Cl(F
−(V )) ⊆ F−(σ1σ2-Cl(V )) for every σ1σ2-open set V of Y ;

(8) τ1τ2-Cl(F
−(σ1σ2-Int(K))) ⊆ F−(K) for every (σ1, σ2)r-closed set K of Y .

Lemma 4. [6] For a multifunction F : (X, τ1, τ2) → (Y, σ1, σ2), the following properties
are equivalent:

(1) F is lower weakly (τ1, τ2)-continuous;

(2) F−(V ) ⊆ τ1τ2-Int(F
−(σ1σ2-Cl(V ))) for every σ1σ2-open set V of Y ;

(3) τ1τ2-Cl(F
+(σ1σ2-Int(K))) ⊆ F+(K) for every σ1σ2-closed set K of Y ;

(4) τ1τ2-Cl(F
+(σ1σ2-Int(σ1σ2-Cl(B)))) ⊆ F+(σ1σ2-Cl(B)) for every subset B of Y ;

(5) F−(σ1σ2-Int(B)) ⊆ τ1τ2-Int(F
−(σ1σ2-Cl(σ1σ2-Int(B)))) for every subset B of Y ;

(6) τ1τ2-Cl(F
+(σ1σ2-Int(σ1σ2-Cl(V )))) ⊆ F+(σ1σ2-Cl(V )) for every σ1σ2-open set V of

Y ;

(7) τ1τ2-Cl(F
+(V )) ⊆ F+(σ1σ2-Cl(V )) for every σ1σ2-open set V of Y ;

(8) τ1τ2-Cl(F
+(σ1σ2-Int(K))) ⊆ F+(K) for every (σ1, σ2)r-closed set K of Y .

Theorem 8. If F : (X, τ1, τ2) → (Y, σ1, σ2) is an upper or lower contra-(τ1, τ2)-continuous
surjective multifunction such that F (x) is σ1σ2-connected for each x ∈ X and (X, τ1, τ2)
is τ1τ2-connected, then (Y, σ1, σ2) is σ1σ2-connected.

Proof. Suppose that (Y, σ1, σ2) is not σ1σ2-connected. There exist nonempty σ1σ2-
open sets U and V of Y such that U ∩V = ∅ and U ∪V = Y . Since F (x) is σ1σ2-connected
for each x ∈ X, either F (x) ⊆ U or F (x) ⊆ V . If x ∈ F+(U ∪V ), then F (x) ⊆ U ∪V and
hence x ∈ F+(U)∪F+(V ). Moreover, since F is surjective, there exist x and y in X such
that F (x) ⊆ U and F (y) ⊆ V ; hence x ∈ F+(U) and y ∈ F+(V ). Therefore, we obtain
the following:

(1) F+(U) ∪ F+(V ) = F+(U ∪ V ) = X;

(2) F+(U) ∩ F+(V ) = F+(U ∩ V ) = ∅;

(3) F+(U) ̸= ∅ and F+(V ) ̸= ∅.

Next, we show that F+(U) and F+(V ) are τ1τ2-open in X. (i) Let F be upper contra-
(τ1, τ2)-continuous, by Theorem 6 we have F is upper weakly (τ1, τ2)-continuous. By
Lemma 3, F+(V ) ⊆ τ1τ2-Int(F

+(σ1σ2-Cl(V ))) = τ1τ2-Int(F
+(V )) since V is σ1σ2-clopen.

Thus, F+(V ) = τ1τ2-Int(F
+(V )) and hence F+(V ) is τ1τ2-open in X. Similarly, we obtain

F+(U) is τ1τ2-open in X. Consequently, this shows that (X, τ1, τ2) is not τ1τ2-connected.
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(ii) Let F be lower contra-(τ1, τ2)-continuous, by Theorem 7 we have F is lower weakly
(τ1, τ2)-continuous. By Lemma 4, τ1τ2-Cl(F

+(V )) ⊆ F+(σ1σ2-Cl(V )) = F+(V ) since V
is σ1σ2-clopen. Therefore, F+(V ) = τ1τ2-Cl(F

+(V )) and so F+(V ) is τ1τ2-closed in X.
Thus, we have F+(U) is τ1τ2-open in X. Similarly, we obtain F+(V ) is τ1τ2-open in X.
Consequently, this shows that (X, τ1, τ2) is not τ1τ2-connected. This completes the proof.

Recall that a bitopological space (X, τ1, τ2) is said to be τ1τ2-compact [77] if every
cover of X by τ1τ2-open sets of X has a finite subcover.

Definition 5. [80] A bitopological space (X, τ1, τ2) is said to be strongly S-τ1τ2-closed if
every cover of X by τ1τ2-closed sets of X has a finite subcover.

Theorem 9. Let F : (X, τ1, τ2) → (Y, σ1, σ2) be a surjective multifunction and F (x)
is strongly S-σ1σ2-closed for each x ∈ X. If F is upper contra-(τ1, τ2)-continuous and
(X, τ1, τ2) is τ1τ2-compact, then (Y, σ1, σ2) is strongly S-σ1σ2-closed.

Proof. Suppose that (X, τ1, τ2) is τ1τ2-compact. Let {Vγ | γ ∈ ∇} be any cover of
Y by σ1σ2-closed sets of Y . Since F (x) is strongly S-σ1σ2-closed for each x ∈ X, there
exists a finite subset ∇(x) of ∇ such that F (x) ⊆ ∪{Vγ | γ ∈ ∇(x)}. Put V (x) =
∪{Vγ | γ ∈ ∇(x)}. Then, V (x) is σ1σ2-closed in Y and F (x) ⊆ V (x). Since F is upper
contra-(τ1, τ2)-continuous, there exists a τ1τ2-open set U(x) of X containing x such that
F (U(x)) ⊆ V (x). The family {U(x) | x ∈ X} is a τ1τ2-open cover of X. Since (X, τ1, τ2)
is τ1τ2-compact, there exists a finite number of pints, say, x1, x2, x3, ..., xn in X such that
X = ∪{U(xk) | xk ∈ X; 1 ≤ k ≤ n}. Thus,

Y = F (X) = ∪{F (U(xk)) | xk ∈ X; 1 ≤ k ≤ n} ⊆ ∪{Vγ(xk) | xk ∈ X; 1 ≤ k ≤ n}.

This shows that (Y, σ1, σ2) is strongly S-σ1σ2-closed.

Definition 6. [56] A multifunction F : (X, τ1, τ2) → (Y, σ1, σ2) is said to be:

(1) upper (τ1, τ2)-continuous if for each x ∈ X and each σ1σ2-open set V of Y such that
F (x) ⊆ V , there exists a τ1τ2-open set U of X containing x such that F (U) ⊆ V ;

(2) lower (τ1, τ2)-continuous if for each x ∈ X and each σ1σ2-open set V of Y such that
F (x)∩V ̸= ∅, there exists a τ1τ2-open set U of X containing x such that F (z)∩V ̸= ∅
for each z ∈ U .

Lemma 5. [56] For a multifunction F : (X, τ1, τ2) → (Y, σ1, σ2), the following properties
are equivalent:

(1) F is upper (τ1, τ2)-continuous;

(2) F+(V ) is τ1τ2-open in X for every σ1σ2-open set V of Y ;

(3) F−(K) is τ1τ2-closed in X for every σ1σ2-closed set K of Y ;

(4) τ1τ2-Cl(F
−(B)) ⊆ F−(σ1σ2-Cl(B)) for every subset B of Y ;
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(5) F+(σ1σ2-Int(B)) ⊆ τ1τ2-Int(F
+(B)) for every subset B of Y .

Theorem 10. If F : (X, τ1, τ2) → (Y, σ1, σ2) is upper (τ1, τ2)-continuous and

G : (Y, σ1, σ2) → (Z, ρ1, ρ2)

is upper contra-(σ1, σ2)-continuous, then G ◦ F : (X, τ1, τ2) → (Z, ρ1, ρ2) is upper contra-
(τ1, τ2)-continuous.

Proof. Let K be any ρ1ρ2-closed set of Z. Since G is upper contra-(σ1, σ2)-continuous,
by Theorem 1 we have F+(K) is σ1σ2-open in Y . Since F is upper (τ1, τ2)-continuous, by
Lemma 5 we have (G ◦ F )+(K) = F+(G+(K)) is τ1τ2-open in X. Thus by Theorem 1,
G ◦ F is upper contra-(τ1, τ2)-continuous.

Lemma 6. [56] For a multifunction F : (X, τ1, τ2) → (Y, σ1, σ2), the following properties
are equivalent:

(1) F is lower (τ1, τ2)-continuous;

(2) F−(V ) is τ1τ2-open in X for every σ1σ2-open set V of Y ;

(3) F+(K) is τ1τ2-closed in X for every σ1σ2-closed set K of Y ;

(4) τ1τ2-Cl(F
+(B)) ⊆ F+(σ1σ2-Cl(B)) for every subset B of Y ;

(5) F (τ1τ2-Cl(A)) ⊆ σ1σ2-Cl(F (A)) for every subset A of X;

(6) F−(σ1σ2-Int(B)) ⊆ τ1τ2-Int(F
−(B)) for every subset B of Y .

Theorem 11. If F : (X, τ1, τ2) → (Y, σ1, σ2) is lower (τ1, τ2)-continuous and

G : (Y, σ1, σ2) → (Z, ρ1, ρ2)

is lower contra-(σ1, σ2)-continuous, then G ◦ F : (X, τ1, τ2) → (Z, ρ1, ρ2) is lower contra-
(τ1, τ2)-continuous.

Proof. The proof is similar to that of Theorem 10.

For a multifunction F : (X, τ1, τ2) → (Y, σ1, σ2), a multifunction

ClF⊛ : (X, τ1, τ2) → (Y, σ1, σ2)

is defined in [77] as follows: ClF⊛(x) = σ1σ2-Cl(F (x)) for each x ∈ X.

Definition 7. [77] A subset A of a bitopological space (X, τ1, τ2) is said to be:

(1) τ1τ2-paracompact if every cover of A by τ1τ2-open sets of X is refined by a cover of
A which consists of τ1τ2-open sets of X and is τ1τ2-locally finite in X;
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(2) τ1τ2-regular if for each x ∈ A and each τ1τ2-open set U of X containing x, there
exists a τ1τ2-open set V of X such that x ∈ V ⊆ τ1τ2-Cl(V ) ⊆ U .

Lemma 7. [77] If F : (X, τ1, τ2) → (Y, σ1, σ2) is a multifunction such that F (x) is σ1σ2-
regular and σ1σ2-paracompact for each x ∈ X, then ClF+

⊛ (V ) = F+(V ) for each σ1σ2-open
set V of Y .

Lemma 8. If F : (X, τ1, τ2) → (Y, σ1, σ2) is a multifunction such that F (x) is σ1σ2-regular
and σ1σ2-paracompact for each x ∈ X, then ClF−

⊛ (K) = F−(K) for each σ1σ2-closed set
K of Y .

Proof. It follows from Lemma 7.

Lemma 9. [77] For a multifunction F : (X, τ1, τ2) → (Y, σ1, σ2), ClF
−
⊛ (V ) = F−(V ) for

each σ1σ2-open set V of Y .

Lemma 10. For a multifunction F : (X, τ1, τ2) → (Y, σ1, σ2), ClF+
⊛ (K) = F+(K) for

each σ1σ2-closed set K of Y .

Proof. It follows from Lemma 9.

Theorem 12. A multifunction F : (X, τ1, τ2) → (Y, σ1, σ2) is upper contra-(τ1, τ2)-
continuous if and only if ClF⊛ : (X, τ1, τ2) → (Y, σ1, σ2) is upper contra-(τ1, τ2)-continuous.

Proof. Suppose that F is upper contra-(τ1, τ2)-continuous. Let K be any σ1σ2-closed
set of Y . It follows from Lemma 9, Lemma 10 and Theorem 1, ClF+

⊛ (K) = F+(K) is
τ1τ2-open in X. Thus, ClF⊛ is upper contra-(τ1, τ2)-continuous.

Conversely, suppose that ClF⊛ is upper contra-(τ1, τ2)-continuous. Let K be any σ1σ2-
closed set of Y . By Lemma 9, Lemma 10 and Theorem 1, F+(K) = ClF+

⊛ (K) is τ1τ2-open
in X. Thus, F is upper contra-(τ1, τ2)-continuous.

Theorem 13. Let F : (X, τ1, τ2) → (Y, σ1, σ2) be a multifunction such that F (x) is σ1σ2-
paracompact and σ1σ2-regular for each x ∈ X. Then, F is lower contra-(τ1, τ2)-continuous
if and only if ClF⊛ : (X, τ1, τ2) → (Y, σ1, σ2) is lower contra-(τ1, τ2)-continuous.

Proof. Suppose that F is lower contra-(τ1, τ2)-continuous. Let K be any σ1σ2-closed
set of Y . It follows from Lemma 7, Lemma 8 and Theorem 2 that ClF−

⊛ (K) = F−(K) is
τ1τ2-open in X. This shows that ClF⊛ is lower contra-(τ1, τ2)-continuous.

Conversely, suppose that ClF⊛ is lower contra-(τ1, τ2)-continuous. Let K be any σ1σ2-
closed set of Y . By Lemma 7, Lemma 8 and Theorem 2, F−(K) = ClF−

⊛ (K) is τ1τ2-open
in X. This shows that F is lower contra-(τ1, τ2)-continuous.
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