EUROPEAN JOURNAL OF PURE AND APPLIED MATHEMATICS

2025, Vol. 18, Issue 2, Article Number 6008 ISSN 1307-5543 – ejpam.com Published by New York Business Global

Upper and Lower Contra- (τ_1, τ_2) -continuity

Nongluk Viriyapong¹, Areeyuth Sama-Ae², Chawalit Boonpok^{1,*}

 ¹ Mathematics and Applied Mathematics Research Unit, Department of Mathematics, Faculty of Science, Mahasarakham University, Maha Sarakham, 44150, Thailand
 ² Department of Mathematics and Computer Science, Faculty of Science and Technology, Prince of Songkla University, Pattani Campus, Pattani, 94000, Thailand

Abstract. This paper presents new classes of multifunctions between bitopological spaces, namely upper contra- (τ_1, τ_2) -continuous multifunctions and lower contra- (τ_1, τ_2) -continuous multifunctions. Moreover, several characterizations and some properties concerning upper contra- (τ_1, τ_2) -continuous multifunctions and lower contra- (τ_1, τ_2) -continuous multifunctions are investigated.

2020 Mathematics Subject Classifications: 54C08, 54C60

Key Words and Phrases: Upper contra- (τ_1, τ_2) -continuous multifunction, lower contra- (τ_1, τ_2) continuous multifunction

1. Introduction

Weaker and stronger forms of open sets in topological spaces such as semi-open sets, preopen sets, α -open sets, β -open sets, δ -open sets and θ -open sets play an important role in the researches of generalizations of continuity. By using these sets many authors introduced and investigated various types of continuity. Viriyapong and Boonpok [1] investigated some characterizations of (Λ, sp) -continuous functions by utilizing the notions of (Λ, sp) -open sets and (Λ, sp) -closed sets due to Boonpok and Khampakdee [2]. Dungthaisong et al. [3] introduced and studied the concept of $g_{(m,n)}$ -continuous functions. Duangphui et al. [4] introduced and investigated the notion of $(\mu, \mu')^{(m,n)}$ continuous functions. Furthermore, several characterizations of almost (Λ, p) -continuous functions, strongly $\theta(\Lambda, p)$ -continuous functions, almost strongly $\theta(\Lambda, p)$ -continuous functions, $(\Lambda, p(\star))$ -continuous functions, weakly (Λ, b) -continuous functions, $\theta(\star, p)$ -continuous functions, $(\Lambda, p(\star))$ -continuous functions, pairwise almost M-continuous functions, (τ_1, τ_2) continuous functions, almost (τ_1, τ_2) -continuous functions, weakly (τ_1, τ_2) -continuous functions and slightly $(\tau_1, \tau_2)s$ -continuous functions were presented in [5], [6], [7], [8], [9],

Email addresses: nongluk.h@msu.ac.th (N. Viriyapong),

areeyuth.sQpsu.ac.th (A. Sama-Ae), chawalit.bQmsu.ac.th (C. Boonpok)

1

https://www.ejpam.com

Copyright: (c) 2025 The Author(s). (CC BY-NC 4.0)

^{*}Corresponding author.

DOI: https://doi.org/10.29020/nybg.ejpam.v18i2.6008

N. Viriyapong, A. Sama-Ae, C. Boonpok / Eur. J. Pure Appl. Math, 18 (2) (2025), 6008

 $2 \ {\rm of} \ 15$

[10], [11], [12], [13], [14], [15], [16], [17], [18] and [19], respectively. Kong-ied at al. [20] introduced and studied the concept of almost quasi (τ_1, τ_2) -continuous functions. Chiangpradit et al. [21] introduced and investigated the notion of weakly quasi (τ_1, τ_2) continuous functions. Thongmoon et al. [22] introduced and studied the notion of rarely (τ_1, τ_2) -continuous functions. Srisarakham et al. [23] introduced and investigated the concept of faintly (τ_1, τ_2) -continuous functions. On the other hand, the present authors introduced and studied the notions of $\delta(\tau_1, \tau_2)$ -continuous functions [24], quasi $\theta(\tau_1, \tau_2)$ -continuous functions [25], almost weakly (τ_1, τ_2) -continuous functions [26] and almost nearly (τ_1, τ_2) -continuous functions [27]. In 1966, Dontchev [28] introduced the notion of contra-continuity in topological spaces. Dontchev and Noiri [29] introduced and studied the concept of *RC*-continuity between topological spaces which is weaker than contra-continuity. Jafari and Noiri [30] introduced a new class of function called contraprecontinuous functions which is weaker than contra-continuous functions and studied several basic properties of contra-precontinuous functions. Ekici [31] introduced and studied a new class of functions called almost contra-precontinuous functions which generalize classes of regular set-connected functions [32], contra-precontinuous functions [30], contra-continuous functions [28], almost s-continuous functions [33] and perfectly continuous functions [34].

In 2008, Ekici et al. [35] extended the notion of contra-continuous functions to the setting of multifunctions. Noiri and Popa [36] introduced the notion of weakly precontinuous multifunctions. Moreover, several characterizations and some properties concerning $(\tau_1, \tau_2)\delta$ -semicontinuous multifunctions, almost weakly (τ_1, τ_2) -continuous multifunctions, weakly quasi (Λ , sp)-continuous multifunctions, \star -continuous multifunctions, $\beta(\star)$ continuous multifunctions, α -*-continuous multifunctions, almost α -*-continuous multifunctions, almost quasi \star -continuous multifunctions, weakly α - \star -continuous multifunctions, $s\beta(\star)$ -continuous multifunctions, weakly $s\beta(\star)$ -continuous multifunctions, $\theta(\star)$ -quasi continuous multifunctions, almost i^{*}-continuous multifunctions, weakly (Λ, sp) -continuous multifunctions, $\alpha(\Lambda, sp)$ -continuous multifunctions, almost $\alpha(\Lambda, sp)$ -continuous multifunctions, weakly $\alpha(\Lambda, sp)$ -continuous multifunctions, almost $\beta(\Lambda, sp)$ -continuous multifunctions, slightly (Λ, sp) -continuous multifunctions, (τ_1, τ_2) -continuous multifunctions, almost (τ_1, τ_2) -continuous multifunctions, weakly (τ_1, τ_2) -continuous multifunctions, weakly quasi (τ_1, τ_2) -continuous multifunctions, almost quasi (τ_1, τ_2) -continuous multifunctions, c- (τ_1, τ_2) -continuous multifunctions, c-quasi (τ_1, τ_2) -continuous multifunctions, s- $(\tau_1, \tau_2)p$ continuous multifunctions, slightly $\alpha(\tau_1, \tau_2)$ -continuous multifunctions and slightly $(\tau_1, \tau_2)p$ continuous multifunctions were established in [37], [38], [39], [40], [41], [42], [43], [44], [45], [46], [47], [48], [49], [50], [51], [52], [53], [54], [55], [56], [57], [58], [59], [60], [61], [62], [63], [63], [64], [65], [66][64] and [65], respectively. On the other hand, the present authors introduced and investigated the notions of rarely s- (τ_1, τ_2) p-continuous multifunctions [66], almost nearly (τ_1, τ_2) continuous multifunctions [67], s- (τ_1, τ_2) -continuous multifunctions [68], quasi $\theta(\tau_1, \tau_2)$ continuous multifunctions [69], almost nearly quasi (τ_1, τ_2) -continuous multifunctions [70], weakly s- (τ_1, τ_2) -continuous multifunctions [71], nearly (τ_1, τ_2) -continuous multifunctions [72] and almost quasi (τ_1, τ_2) -continuous multifunctions [73]. Ekici et al. [74] introduced and studied two new concepts namely contra-precontinuous multifunctions and almost

contra-precontinuous multifunctions which are containing the class of contra-continuous multifunctions [35] and contained in the class of weakly precontinuous multifunctions. Ekici et al. [75] introduced and studied a new generalization of contra-continuous multifunctions called almost contra-continuous multifunctions. Recently, the present authors [76] introduced and investigated the notions of upper almost contra- (Λ, sp) -continuous multifunctions and lower almost contra- (Λ, sp) -continuous multifunctions. In this paper, we introduce the concepts of upper contra- (τ_1, τ_2) -continuous multifunctions. We also investigate several characterizations of upper contra- (τ_1, τ_2) -continuous multifunctions and lower contra- (τ_1, τ_2) -continuous multifunctions.

2. Preliminaries

Throughout the present paper, spaces (X, τ_1, τ_2) and (Y, σ_1, σ_2) (or simply X and Y) always mean bitopological spaces on which no separation axioms are assumed unless explicitly stated. Let A be a subset of a bitopological space (X, τ_1, τ_2) . The closure of A and the interior of A with respect to τ_i are denoted by τ_i -Cl(A) and τ_i -Int(A), respectively, for i = 1, 2. A subset A of a bitopological space (X, τ_1, τ_2) is called $\tau_1 \tau_2$ -closed [77] if $A = \tau_1$ -Cl(τ_2 -Cl(A)). The complement of a $\tau_1 \tau_2$ -closed set is called $\tau_1 \tau_2$ -open. The intersection of all $\tau_1 \tau_2$ -closed sets of X containing A is called the $\tau_1 \tau_2$ -closure [77] of A and is denoted by $\tau_1 \tau_2$ -Cl(A). The union of all $\tau_1 \tau_2$ -open sets of X contained in A is called the $\tau_1 \tau_2$ -closure [77] of A and is denoted by $\tau_1 \tau_2$ -Cl(A).

Lemma 1. [77] Let A and B be subsets of a bitopological space (X, τ_1, τ_2) . For the $\tau_1 \tau_2$ closure, the following properties hold:

- (1) $A \subseteq \tau_1 \tau_2 Cl(A)$ and $\tau_1 \tau_2 Cl(\tau_1 \tau_2 Cl(A)) = \tau_1 \tau_2 Cl(A)$.
- (2) If $A \subseteq B$, then $\tau_1 \tau_2$ -Cl(A) $\subseteq \tau_1 \tau_2$ -Cl(B).
- (3) $\tau_1\tau_2$ -Cl(A) is $\tau_1\tau_2$ -closed.
- (4) A is $\tau_1 \tau_2$ -closed if and only if $A = \tau_1 \tau_2$ -Cl(A).
- (5) $\tau_1 \tau_2 Cl(X A) = X \tau_1 \tau_2 Int(A).$

A subset A of a bitopological space (X, τ_1, τ_2) is called $\alpha(\tau_1, \tau_2)$ -open [78] if $A \subseteq \tau_1\tau_2$ -Int $(\tau_1\tau_2$ -Cl $(\tau_1\tau_2$ -Int(A))). The complement of an $\alpha(\tau_1, \tau_2)$ -open set is called $\alpha(\tau_1, \tau_2)$ closed. A subset A of a bitopological space (X, τ_1, τ_2) is called $(\tau_1, \tau_2)r$ -open [79] (resp. $(\tau_1, \tau_2)s$ -open [37], $(\tau_1, \tau_2)p$ -open [37], $(\tau_1, \tau_2)\beta$ -open [37]) if $A = \tau_1\tau_2$ -Int $(\tau_1\tau_2$ -Cl(A))(resp. $A \subseteq \tau_1\tau_2$ -Cl $(\tau_1\tau_2$ -Int $(A)), A \subseteq \tau_1\tau_2$ -Int $(\tau_1\tau_2$ -Cl $(A)), A \subseteq \tau_1\tau_2$ -Cl $(\tau_1\tau_2$ -Int $(\tau_1\tau_2$ -Cl(A))))). The complement of a $(\tau_1, \tau_2)r$ -open (resp. $(\tau_1, \tau_2)s$ -open, $(\tau_1, \tau_2)p$ -open, $(\tau_1, \tau_2)\beta$ -open, $\alpha(\tau_1, \tau_2)$ -open) set is called $(\tau_1, \tau_2)r$ -closed (resp. $(\tau_1, \tau_2)s$ -closed, $(\tau_1, \tau_2)p$ -closed, $(\tau_1, \tau_2)\beta$ closed, $\alpha(\tau_1, \tau_2)$ -closed). Let A be a subset of a bitopological space (X, τ_1, τ_2) . The set $\cap \{G \mid A \subseteq G \text{ and } G \text{ is } \tau_1\tau_2$ -open} \text{ is called the } \tau_1\tau_2-kernel [77] of A and is denoted by $\tau_1\tau_2$ -ker(A). **Lemma 2.** [77] For subsets A, B of a bitopological space (X, τ_1, τ_2) , the following properties hold:

- (1) $A \subseteq \tau_1 \tau_2$ -ker(A).
- (2) If $A \subseteq B$, then $\tau_1 \tau_2$ -ker $(A) \subseteq \tau_1 \tau_2$ -ker(B).
- (3) If A is $\tau_1 \tau_2$ -open, then $\tau_1 \tau_2$ -ker(A) = A.
- (4) $x \in \tau_1 \tau_2$ -ker(A) if and only if $A \cap H \neq \emptyset$ for every $\tau_1 \tau_2$ -closed set H containing x.

By a multifunction $F: X \to Y$, we mean a point-to-set correspondence from X into Y, and we always assume that $F(x) \neq \emptyset$ for all $x \in X$. For a multifunction $F: X \to Y$, we shall denote the upper and lower inverse of a set B of Y by $F^+(B)$ and $F^-(B)$, respectively, that is, $F^+(B) = \{x \in X \mid F(x) \subseteq B\}$ and $F^-(B) = \{x \in X \mid F(x) \cap B \neq \emptyset\}$. In particular, $F^{-}(y) = \{x \in X \mid y \in F(x)\}$ for each point $y \in Y$. For each $A \subseteq X$, $F(A) = \bigcup_{x \in A} F(x).$

3. Upper and lower contra- (τ_1, τ_2) -continuous multifunctions

In this section, we introduce the concepts of upper contra- (τ_1, τ_2) -continuous multifunctions and lower contra- (τ_1, τ_2) -continuous multifunctions. Furthermore, several characterizations of upper contra- (τ_1, τ_2) -continuous multifunctions and lower contra- (τ_1, τ_2) continuous multifunctions are discussed.

Definition 1. A multifunction $F: (X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$ is called upper contra- (τ_1, τ_2) continuous at a point $x \in X$ if for each $\sigma_1 \sigma_2$ -closed set K of Y such that $x \in F^+(K)$, there exists a $\tau_1\tau_2$ -open set U of X containing x such that $U \subseteq F^+(K)$. A multifunction $F: (X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$ is called upper contra- (τ_1, τ_2) -continuous if F is upper contra- (τ_1, τ_2) -continuous at each point x of X.

Theorem 1. For a multifunction $F: (X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$, the following properties are equivalent:

- (1) F is upper contra- (τ_1, τ_2) -continuous;
- (2) $F^+(K)$ is $\tau_1\tau_2$ -open in X for every $\sigma_1\sigma_2$ -closed set K of Y;
- (3) $F^{-}(V)$ is $\tau_{1}\tau_{2}$ -closed in X for every $\sigma_{1}\sigma_{2}$ -open set V of Y;
- (4) for each $x \in X$ and each $\sigma_1 \sigma_2$ -closed set K of Y containing F(x), there exists a $\tau_1 \tau_2$ -open set U of X containing x such that if $y \in U$, then $F(y) \subseteq K$.

Proof. (1) \Leftrightarrow (2): Let K be any $\sigma_1 \sigma_2$ -closed set of Y and $x \in F^+(K)$. Since F is upper contra- (τ_1, τ_2) -continuous, there exists a $\tau_1 \tau_2$ -open set U of X containing x such that $U \subseteq F^+(K)$. Thus, $F^+(K)$ is $\tau_1 \tau_2$ -open in X. The converse of the proof is similar. (2) \Leftrightarrow (3): This follows from the fact that $F^+(Y-B) = X - F^-(B)$ for every subset

 $B ext{ of } Y.$

 $(1) \Leftrightarrow (4)$: Obvious.

N. Viriyapong, A. Sama-Ae, C. Boonpok / Eur. J. Pure Appl. Math, 18 (2) (2025), 6008 5 of 15

Definition 2. A multifunction $F : (X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$ is called lower contra- (τ_1, τ_2) continuous at a point $x \in X$ if for each $\sigma_1 \sigma_2$ -closed set K of Y such that $x \in F^-(K)$, there exists a $\tau_1 \tau_2$ -open set U of X containing x such that $U \subseteq F^-(K)$. A multifunction $F : (X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$ is called lower contra- (τ_1, τ_2) -continuous if F is lower contra- (τ_1, τ_2) -continuous at each point x of X.

Theorem 2. For a multifunction $F : (X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$, the following properties are equivalent:

- (1) F is lower contra- (τ_1, τ_2) -continuous;
- (2) $F^{-}(K)$ is $\tau_{1}\tau_{2}$ -open in X for every $\sigma_{1}\sigma_{2}$ -closed set K of Y;
- (3) $F^+(V)$ is $\tau_1\tau_2$ -closed in X for every $\sigma_1\sigma_2$ -open set V of Y;
- (4) for each $x \in X$ and each $\sigma_1 \sigma_2$ -closed set K of Y such that $F(x) \cap K \neq \emptyset$, there exists a $\tau_1 \tau_2$ -open set U of X containing x such that if $y \in U$, then $F(y) \cap K \neq \emptyset$.

Proof. The proof is similar to that of Theorem 1.

Theorem 3. Let $F : (X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$ be a multifunction. If $\tau_1 \tau_2 - Cl(F^-(B)) \subseteq F^-(\sigma_1 \sigma_2 - ker(B))$ for every subset B of Y, then F is upper contra- (τ_1, τ_2) -continuous.

Proof. Suppose that $\tau_1\tau_2$ -Cl $(F^-(B)) \subseteq F^-(\sigma_1\sigma_2$ -ker(B)) for every subset B of Y. Let V be any $\sigma_1\sigma_2$ -open set of Y. By Lemma 2, we have

$$\tau_1\tau_2\operatorname{-Cl}(F^-(V)) \subseteq F^-(\sigma_1\sigma_2\operatorname{-}ker(V)) = F^-(V)$$

and hence $F^{-}(V)$ is $\tau_1\tau_2$ -closed in X. By Theorem 1, F is upper contra- (τ_1, τ_2) -continuous.

Theorem 4. Let $F : (X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$ be a multifunction. If $F(\tau_1\tau_2 - Cl(A)) \subseteq \sigma_1\sigma_2$ -ker(F(A)) for every subset A of X, then F is lower contra- (τ_1, τ_2) -continuous.

Proof. Let V be any $\sigma_1 \sigma_2$ -open set of Y. Then, $F(\tau_1 \tau_2 - \operatorname{Cl}(F^+(V))) \subseteq \sigma_1 \sigma_2 - ker(V)$ and hence $\tau_1 \tau_2 - \operatorname{Cl}(F^+(V)) \subseteq F^+(\sigma_1 \sigma_2 - ker(V))$. By Lemma 2, we have

$$\tau_1 \tau_2 \operatorname{-Cl}(F^+(V)) \subseteq F^+(\sigma_1 \sigma_2 \operatorname{-ker}(V)) = F^+(V)$$

and hence $F^+(V)$ is $\tau_1\tau_2$ -closed in X. By Theorem 2, F is lower contra- (τ_1, τ_2) -continuous.

Theorem 5. Let $F : (X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$ be a multifunction. If $\tau_1 \tau_2 - Cl(F^+(B)) \subseteq F^+(\sigma_1 \sigma_2 - ker(B))$ for every subset B of Y, then F is lower contra- (τ_1, τ_2) -continuous.

Proof. Let V be any $\sigma_1 \sigma_2$ -open set of Y. Then, $\tau_1 \tau_2$ -Cl $(F^+(V)) \subseteq F^+(\sigma_1 \sigma_2 - ker(V))$ and by Lemma 2, $\tau_1 \tau_2$ -Cl $(F^+(V)) \subseteq F^+(\sigma_1 \sigma_2 - ker(V)) = F^+(V)$. This implies that $F^+(V)$ is $\tau_1 \tau_2$ -closed in X. By Theorem 2, F is lower contra- (τ_1, τ_2) -continuous. N. Viriyapong, A. Sama-Ae, C. Boonpok / Eur. J. Pure Appl. Math, 18 (2) (2025), 6008 6 of 15

Definition 3. [6] A multifunction $F : (X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$ is said to be upper weakly (τ_1, τ_2) -continuous if for each $x \in X$ and each $\sigma_1 \sigma_2$ -open set V of Y containing F(x), there exists a $\tau_1 \tau_2$ -open set U of X containing x such that $F(U) \subseteq \sigma_1 \sigma_2$ -Cl(V).

Theorem 6. If $F : (X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$ is an upper contra- (τ_1, τ_2) -continuous multifunction, then F is upper weakly (τ_1, τ_2) -continuous.

Proof. Let $x \in X$ and V be any $\sigma_1 \sigma_2$ -open set of Y containing F(x). Then, $\sigma_1 \sigma_2$ -Cl(V) is a $\sigma_1 \sigma_2$ -closed set Y containing F(x). Since F is upper contra- (τ_1, τ_2) -continuous, by Theorem 1 there exists a $\tau_1 \tau_2$ -open set U of X containing x such that $U \subseteq F^+(\sigma_1 \sigma_2$ -Cl(V)); hence $F(U) \subseteq \sigma_1 \sigma_2$ -Cl(V). This shows that F is upper weakly (τ_1, τ_2) -continuous.

The converse of Theorem 6 is not true in general as shown in the following example.

Example 1. Let $X = \{a, b, c, d\}$ with topologies $\tau_1 = \{\emptyset, \{a\}, \{a, b\}, \{a, b, c\}, X\}$ and $\tau_2 = \{\emptyset, \{a\}, \{a, b\}, \{a, b, c\}, \{a, b, d\}, X\}$. Let $Y = \{1, 2, 3, 4\}$ with topologies

$$\sigma_1 = \{\emptyset, \{1\}, \{1, 2\}, \{1, 2, 3\}, \{1, 2, 4\}, Y\}$$

and $\sigma_2 = \{\emptyset, \{1\}, \{1, 2\}, \{1, 2, 3\}, Y\}$. A multifunction $F : (X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$ is defined as follows: $F(a) = \{1, 2\}, F(b) = \{2\}, F(c) = \{1, 2\}$ and $F(d) = \{4\}$. Then, F is upper weakly (τ_1, τ_2) -continuous but F is not upper contra- (τ_1, τ_2) -continuous.

Definition 4. [6] A multifunction $F : (X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$ is said to be lower weakly (τ_1, τ_2) -continuous if for each $x \in X$ and each $\sigma_1 \sigma_2$ -open set V of Y such that $F(x) \cap V \neq \emptyset$, there exists a $\tau_1 \tau_2$ -open set U of X containing x such that $\sigma_1 \sigma_2$ - $Cl(V) \cap F(z) \neq \emptyset$ for each $z \in U$.

Theorem 7. If $F : (X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$ is a lower contra- (τ_1, τ_2) -continuous multifunction, then F is lower weakly (τ_1, τ_2) -continuous.

Proof. The proof is similar to that of Theorem 6.

Recall that a bitopological space (X, τ_1, τ_2) is said to be $\tau_1 \tau_2$ -connected [77] if X cannot be written as the union of two nonempty disjoint $\tau_1 \tau_2$ -open sets.

Lemma 3. [6] For a multifunction $F : (X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$, the following properties are equivalent:

(1) F is upper weakly (τ_1, τ_2) -continuous;

(2)
$$F^+(V) \subseteq \tau_1 \tau_2$$
-Int $(F^+(\sigma_1 \sigma_2 - Cl(V)))$ for every $\sigma_1 \sigma_2$ -open set V of Y;

- (3) $\tau_1\tau_2$ -Cl($F^-(\sigma_1\sigma_2$ -Int(K))) $\subseteq F^-(K)$ for every $\sigma_1\sigma_2$ -closed set K of Y;
- (4) $\tau_1\tau_2$ - $Cl(F^-(\sigma_1\sigma_2$ - $Int(\sigma_1\sigma_2$ - $Cl(B)))) \subseteq F^-(\sigma_1\sigma_2$ -Cl(B)) for every subset B of Y;
- (5) $F^+(\sigma_1\sigma_2\operatorname{-Int}(B)) \subseteq \tau_1\tau_2\operatorname{-Int}(F^+(\sigma_1\sigma_2\operatorname{-Cl}(\sigma_1\sigma_2\operatorname{-Int}(B))))$ for every subset B of Y;

N. Viriyapong, A. Sama-Ae, C. Boonpok / Eur. J. Pure Appl. Math, 18 (2) (2025), 6008 7 of 15

- (6) $\tau_1\tau_2$ -Cl($F^-(\sigma_1\sigma_2$ -Int($\sigma_1\sigma_2$ -Cl(V)))) $\subseteq F^-(\sigma_1\sigma_2$ -Cl(V)) for every $\sigma_1\sigma_2$ -open set V of Y;
- (7) $\tau_1\tau_2$ -Cl($F^-(V)$) $\subseteq F^-(\sigma_1\sigma_2$ -Cl(V)) for every $\sigma_1\sigma_2$ -open set V of Y;
- (8) $\tau_1\tau_2$ -Cl($F^-(\sigma_1\sigma_2$ -Int(K))) $\subseteq F^-(K)$ for every (σ_1, σ_2) r-closed set K of Y.

Lemma 4. [6] For a multifunction $F : (X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$, the following properties are equivalent:

- (1) F is lower weakly (τ_1, τ_2) -continuous;
- (2) $F^{-}(V) \subseteq \tau_{1}\tau_{2}$ -Int $(F^{-}(\sigma_{1}\sigma_{2}-Cl(V)))$ for every $\sigma_{1}\sigma_{2}$ -open set V of Y;
- (3) $\tau_1\tau_2$ -Cl($F^+(\sigma_1\sigma_2$ -Int(K))) $\subseteq F^+(K)$ for every $\sigma_1\sigma_2$ -closed set K of Y;
- (4) $\tau_1\tau_2$ -Cl($F^+(\sigma_1\sigma_2$ -Int($\sigma_1\sigma_2$ -Cl(B)))) $\subseteq F^+(\sigma_1\sigma_2$ -Cl(B)) for every subset B of Y;
- (5) $F^{-}(\sigma_{1}\sigma_{2}\text{-}Int(B)) \subseteq \tau_{1}\tau_{2}\text{-}Int(F^{-}(\sigma_{1}\sigma_{2}\text{-}Cl(\sigma_{1}\sigma_{2}\text{-}Int(B))))$ for every subset B of Y;
- (6) $\tau_1\tau_2$ -Cl(F⁺($\sigma_1\sigma_2$ -Int($\sigma_1\sigma_2$ -Cl(V)))) \subseteq F⁺($\sigma_1\sigma_2$ -Cl(V)) for every $\sigma_1\sigma_2$ -open set V of Y;
- (7) $\tau_1\tau_2$ -Cl($F^+(V)$) $\subseteq F^+(\sigma_1\sigma_2$ -Cl(V)) for every $\sigma_1\sigma_2$ -open set V of Y;
- (8) $\tau_1\tau_2$ -Cl(F⁺($\sigma_1\sigma_2$ -Int(K))) \subseteq F⁺(K) for every (σ_1, σ_2)r-closed set K of Y.

Theorem 8. If $F : (X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$ is an upper or lower contra- (τ_1, τ_2) -continuous surjective multifunction such that F(x) is $\sigma_1 \sigma_2$ -connected for each $x \in X$ and (X, τ_1, τ_2) is $\tau_1 \tau_2$ -connected, then (Y, σ_1, σ_2) is $\sigma_1 \sigma_2$ -connected.

Proof. Suppose that (Y, σ_1, σ_2) is not $\sigma_1 \sigma_2$ -connected. There exist nonempty $\sigma_1 \sigma_2$ open sets U and V of Y such that $U \cap V = \emptyset$ and $U \cup V = Y$. Since F(x) is $\sigma_1 \sigma_2$ -connected for each $x \in X$, either $F(x) \subseteq U$ or $F(x) \subseteq V$. If $x \in F^+(U \cup V)$, then $F(x) \subseteq U \cup V$ and hence $x \in F^+(U) \cup F^+(V)$. Moreover, since F is surjective, there exist x and y in X such that $F(x) \subseteq U$ and $F(y) \subseteq V$; hence $x \in F^+(U)$ and $y \in F^+(V)$. Therefore, we obtain the following:

- (1) $F^+(U) \cup F^+(V) = F^+(U \cup V) = X;$
- (2) $F^+(U) \cap F^+(V) = F^+(U \cap V) = \emptyset;$
- (3) $F^+(U) \neq \emptyset$ and $F^+(V) \neq \emptyset$.

Next, we show that $F^+(U)$ and $F^+(V)$ are $\tau_1\tau_2$ -open in X. (i) Let F be upper contra-(τ_1, τ_2)-continuous, by Theorem 6 we have F is upper weakly (τ_1, τ_2)-continuous. By Lemma 3, $F^+(V) \subseteq \tau_1\tau_2$ -Int($F^+(\sigma_1\sigma_2$ -Cl(V))) = $\tau_1\tau_2$ -Int($F^+(V)$) since V is $\sigma_1\sigma_2$ -clopen. Thus, $F^+(V) = \tau_1\tau_2$ -Int($F^+(V)$) and hence $F^+(V)$ is $\tau_1\tau_2$ -open in X. Similarly, we obtain $F^+(U)$ is $\tau_1\tau_2$ -open in X. Consequently, this shows that (X, τ_1, τ_2) is not $\tau_1\tau_2$ -connected. (*ii*) Let F be lower contra- (τ_1, τ_2) -continuous, by Theorem 7 we have F is lower weakly (τ_1, τ_2) -continuous. By Lemma 4, $\tau_1\tau_2$ -Cl $(F^+(V)) \subseteq F^+(\sigma_1\sigma_2$ -Cl $(V)) = F^+(V)$ since V is $\sigma_1\sigma_2$ -clopen. Therefore, $F^+(V) = \tau_1\tau_2$ -Cl $(F^+(V))$ and so $F^+(V)$ is $\tau_1\tau_2$ -closed in X. Thus, we have $F^+(U)$ is $\tau_1\tau_2$ -open in X. Similarly, we obtain $F^+(V)$ is $\tau_1\tau_2$ -open in X. Consequently, this shows that (X, τ_1, τ_2) is not $\tau_1\tau_2$ -connected. This completes the proof.

Recall that a bitopological space (X, τ_1, τ_2) is said to be $\tau_1 \tau_2$ -compact [77] if every cover of X by $\tau_1 \tau_2$ -open sets of X has a finite subcover.

Definition 5. [80] A bitopological space (X, τ_1, τ_2) is said to be strongly $S - \tau_1 \tau_2$ -closed if every cover of X by $\tau_1 \tau_2$ -closed sets of X has a finite subcover.

Theorem 9. Let $F : (X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$ be a surjective multifunction and F(x) is strongly $S \cdot \sigma_1 \sigma_2$ -closed for each $x \in X$. If F is upper contra- (τ_1, τ_2) -continuous and (X, τ_1, τ_2) is $\tau_1 \tau_2$ -compact, then (Y, σ_1, σ_2) is strongly $S \cdot \sigma_1 \sigma_2$ -closed.

Proof. Suppose that (X, τ_1, τ_2) is $\tau_1 \tau_2$ -compact. Let $\{V_\gamma \mid \gamma \in \nabla\}$ be any cover of Y by $\sigma_1 \sigma_2$ -closed sets of Y. Since F(x) is strongly $S \cdot \sigma_1 \sigma_2$ -closed for each $x \in X$, there exists a finite subset $\nabla(x)$ of ∇ such that $F(x) \subseteq \cup \{V_\gamma \mid \gamma \in \nabla(x)\}$. Put $V(x) = \cup \{V_\gamma \mid \gamma \in \nabla(x)\}$. Then, V(x) is $\sigma_1 \sigma_2$ -closed in Y and $F(x) \subseteq V(x)$. Since F is upper contra- (τ_1, τ_2) -continuous, there exists a $\tau_1 \tau_2$ -open set U(x) of X containing x such that $F(U(x)) \subseteq V(x)$. The family $\{U(x) \mid x \in X\}$ is a $\tau_1 \tau_2$ -open cover of X. Since (X, τ_1, τ_2) is $\tau_1 \tau_2$ -compact, there exists a finite number of pints, say, $x_1, x_2, x_3, ..., x_n$ in X such that $X = \cup \{U(x_k) \mid x_k \in X; 1 \leq k \leq n\}$. Thus,

$$Y = F(X) = \bigcup \{ F(U(x_k)) \mid x_k \in X; 1 \le k \le n \} \subseteq \bigcup \{ V_{\gamma(x_k)} \mid x_k \in X; 1 \le k \le n \}.$$

This shows that (Y, σ_1, σ_2) is strongly S- $\sigma_1 \sigma_2$ -closed.

Definition 6. [56] A multifunction $F: (X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$ is said to be:

- (1) upper (τ_1, τ_2) -continuous if for each $x \in X$ and each $\sigma_1 \sigma_2$ -open set V of Y such that $F(x) \subseteq V$, there exists a $\tau_1 \tau_2$ -open set U of X containing x such that $F(U) \subseteq V$;
- (2) lower (τ_1, τ_2) -continuous if for each $x \in X$ and each $\sigma_1 \sigma_2$ -open set V of Y such that $F(x) \cap V \neq \emptyset$, there exists a $\tau_1 \tau_2$ -open set U of X containing x such that $F(z) \cap V \neq \emptyset$ for each $z \in U$.

Lemma 5. [56] For a multifunction $F : (X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$, the following properties are equivalent:

- (1) F is upper (τ_1, τ_2) -continuous;
- (2) $F^+(V)$ is $\tau_1\tau_2$ -open in X for every $\sigma_1\sigma_2$ -open set V of Y;
- (3) $F^{-}(K)$ is $\tau_{1}\tau_{2}$ -closed in X for every $\sigma_{1}\sigma_{2}$ -closed set K of Y;
- (4) $\tau_1 \tau_2$ -Cl($F^-(B)$) $\subseteq F^-(\sigma_1 \sigma_2$ -Cl(B)) for every subset B of Y;

N. Viriyapong, A. Sama-Ae, C. Boonpok / Eur. J. Pure Appl. Math, 18 (2) (2025), 6008

(5)
$$F^+(\sigma_1\sigma_2\operatorname{-Int}(B)) \subseteq \tau_1\tau_2\operatorname{-Int}(F^+(B))$$
 for every subset B of Y

Theorem 10. If $F : (X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$ is upper (τ_1, τ_2) -continuous and

$$G: (Y, \sigma_1, \sigma_2) \to (Z, \rho_1, \rho_2)$$

is upper contra- (σ_1, σ_2) -continuous, then $G \circ F : (X, \tau_1, \tau_2) \to (Z, \rho_1, \rho_2)$ is upper contra- (τ_1, τ_2) -continuous.

Proof. Let K be any $\rho_1\rho_2$ -closed set of Z. Since G is upper contra- (σ_1, σ_2) -continuous, by Theorem 1 we have $F^+(K)$ is $\sigma_1\sigma_2$ -open in Y. Since F is upper (τ_1, τ_2) -continuous, by Lemma 5 we have $(G \circ F)^+(K) = F^+(G^+(K))$ is $\tau_1\tau_2$ -open in X. Thus by Theorem 1, $G \circ F$ is upper contra- (τ_1, τ_2) -continuous.

Lemma 6. [56] For a multifunction $F : (X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$, the following properties are equivalent:

- (1) F is lower (τ_1, τ_2) -continuous;
- (2) $F^{-}(V)$ is $\tau_{1}\tau_{2}$ -open in X for every $\sigma_{1}\sigma_{2}$ -open set V of Y;
- (3) $F^+(K)$ is $\tau_1\tau_2$ -closed in X for every $\sigma_1\sigma_2$ -closed set K of Y;
- (4) $\tau_1\tau_2$ -Cl(F⁺(B)) \subseteq F⁺($\sigma_1\sigma_2$ -Cl(B)) for every subset B of Y;
- (5) $F(\tau_1\tau_2 Cl(A)) \subseteq \sigma_1\sigma_2 Cl(F(A))$ for every subset A of X;
- (6) $F^{-}(\sigma_{1}\sigma_{2}\text{-Int}(B)) \subseteq \tau_{1}\tau_{2}\text{-Int}(F^{-}(B))$ for every subset B of Y.

Theorem 11. If $F: (X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$ is lower (τ_1, τ_2) -continuous and

$$G: (Y, \sigma_1, \sigma_2) \to (Z, \rho_1, \rho_2)$$

is lower contra- (σ_1, σ_2) -continuous, then $G \circ F : (X, \tau_1, \tau_2) \to (Z, \rho_1, \rho_2)$ is lower contra- (τ_1, τ_2) -continuous.

Proof. The proof is similar to that of Theorem 10.

For a multifunction $F: (X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$, a multifunction

$$\operatorname{Cl} F_{\circledast} : (X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$$

is defined in [77] as follows: $\operatorname{Cl} F_{\circledast}(x) = \sigma_1 \sigma_2 \operatorname{-Cl}(F(x))$ for each $x \in X$.

Definition 7. [77] A subset A of a bitopological space (X, τ_1, τ_2) is said to be:

(1) $\tau_1\tau_2$ -paracompact if every cover of A by $\tau_1\tau_2$ -open sets of X is refined by a cover of A which consists of $\tau_1\tau_2$ -open sets of X and is $\tau_1\tau_2$ -locally finite in X;

N. Viriyapong, A. Sama-Ae, C. Boonpok / Eur. J. Pure Appl. Math, 18 (2) (2025), 6008 10 of 15

(2) $\tau_1\tau_2$ -regular if for each $x \in A$ and each $\tau_1\tau_2$ -open set U of X containing x, there exists a $\tau_1\tau_2$ -open set V of X such that $x \in V \subseteq \tau_1\tau_2$ - $Cl(V) \subseteq U$.

Lemma 7. [77] If $F : (X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$ is a multifunction such that F(x) is $\sigma_1 \sigma_2$ -regular and $\sigma_1 \sigma_2$ -paracompact for each $x \in X$, then $ClF^+_{\circledast}(V) = F^+(V)$ for each $\sigma_1 \sigma_2$ -open set V of Y.

Lemma 8. If $F : (X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$ is a multifunction such that F(x) is $\sigma_1 \sigma_2$ -regular and $\sigma_1 \sigma_2$ -paracompact for each $x \in X$, then $ClF^-_{\circledast}(K) = F^-(K)$ for each $\sigma_1 \sigma_2$ -closed set K of Y.

Proof. It follows from Lemma 7.

Lemma 9. [77] For a multifunction $F : (X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2), \ ClF^-_{\circledast}(V) = F^-(V)$ for each $\sigma_1 \sigma_2$ -open set V of Y.

Lemma 10. For a multifunction $F : (X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$, $ClF^+_{\circledast}(K) = F^+(K)$ for each $\sigma_1 \sigma_2$ -closed set K of Y.

Proof. It follows from Lemma 9.

Theorem 12. A multifunction $F : (X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$ is upper contra- (τ_1, τ_2) continuous if and only if $ClF_{\circledast} : (X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$ is upper contra- (τ_1, τ_2) -continuous.

Proof. Suppose that F is upper contra- (τ_1, τ_2) -continuous. Let K be any $\sigma_1 \sigma_2$ -closed set of Y. It follows from Lemma 9, Lemma 10 and Theorem 1, $\operatorname{Cl}F^+_{\circledast}(K) = F^+(K)$ is $\tau_1 \tau_2$ -open in X. Thus, $\operatorname{Cl}F_{\circledast}$ is upper contra- (τ_1, τ_2) -continuous.

Conversely, suppose that $\operatorname{Cl} F_{\circledast}$ is upper contra- (τ_1, τ_2) -continuous. Let K be any $\sigma_1 \sigma_2$ closed set of Y. By Lemma 9, Lemma 10 and Theorem 1, $F^+(K) = \operatorname{Cl} F^+_{\circledast}(K)$ is $\tau_1 \tau_2$ -open in X. Thus, F is upper contra- (τ_1, τ_2) -continuous.

Theorem 13. Let $F : (X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$ be a multifunction such that F(x) is $\sigma_1 \sigma_2$ paracompact and $\sigma_1 \sigma_2$ -regular for each $x \in X$. Then, F is lower contra- (τ_1, τ_2) -continuous
if and only if $ClF_{\circledast} : (X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$ is lower contra- (τ_1, τ_2) -continuous.

Proof. Suppose that F is lower contra- (τ_1, τ_2) -continuous. Let K be any $\sigma_1 \sigma_2$ -closed set of Y. It follows from Lemma 7, Lemma 8 and Theorem 2 that $\operatorname{Cl} F^-_{\circledast}(K) = F^-(K)$ is $\tau_1 \tau_2$ -open in X. This shows that $\operatorname{Cl} F_{\circledast}$ is lower contra- (τ_1, τ_2) -continuous.

Conversely, suppose that $\operatorname{Cl} F_{\circledast}$ is lower contra- (τ_1, τ_2) -continuous. Let K be any $\sigma_1 \sigma_2$ closed set of Y. By Lemma 7, Lemma 8 and Theorem 2, $F^-(K) = \operatorname{Cl} F^-_{\circledast}(K)$ is $\tau_1 \tau_2$ -open in X. This shows that F is lower contra- (τ_1, τ_2) -continuous.

Acknowledgements

This research project was financially supported by Mahasarakham University.

References

- [1] C. Viriyapong and C. Boonpok. (Λ, sp) -continuous functions. WSEAS Transactions on Mathematics, 21:380–385, 2022.
- [2] C. Boonpok and J. Khampakdee. (Λ, sp) -open sets in topological spaces. European Journal of Pure and Applied Mathematics, 15(2):572–588, 2022.
- [3] T. Dungthaisong, C. Boonpok, and C. Viriyapong. Generalized closed sets in bigeneralized topological spaces. *International Journal of Mathematical Analysis*, 5(24):1175–1184, 2011.
- [4] T. Duangphui, C. Boonpok, and C. Viriyapong. Continuous functions on bigeneralized topological spaces. *International Journal of Mathematical Analysis*, 5(24):1165– 1174, 2011.
- [5] N. Srisarakham and C. Boonpok. Almost (Λ, p) -continuous functions. International Journal of Mathematics and Computer Science, 18(2):255–259, 2023.
- [6] M. Thongmoon and C. Boonpok. Strongly $\theta(\Lambda, p)$ -continuous functions. International Journal of Mathematics and Computer Science, 19(2):475–479, 2024.
- [7] C. Boonpok and J. Khampakdee. Almost strong $\theta(\Lambda, p)$ -continuity for functions. European Journal of Pure and Applied Mathematics, 17(1):300–309, 2024.
- [8] P. Pue-on and C. Boonpok. $\theta(\Lambda, p)$ -continuity for functions. International Journal of Mathematics and Computer Science, 19(2):491–495, 2024.
- [9] C. Boonpok and N. Srisarakham. Weak forms of (Λ, b) -open sets and weak (Λ, b) continuity. European Journal of Pure and Applied Mathematics, 16(1):29–43, 2023.
- [10] C. Boonpok. $\theta(\star)$ -precontinuity. Mathematica, 65(1):31–42, 2023.
- [11] C. Boonpok. On some closed sets and low separation axioms via topological ideals. European Journal of Pure and Applied Mathematics, 15(3):1023–1046, 2022.
- [12] C. Boonpok. On some spaces via topological ideals. Open Mathematics, 21:20230118, 2023.
- [13] C. Boonpok. On characterizations of *-hyperconnected ideal topological spaces. Journal of Mathematics, 2020:9387601, 2020.
- [14] C. Boonpok. Almost (g, m)-continuous functions. International Journal of Mathematical Analysis, 4(40):1957–1964, 2010.
- [15] C. Boonpok. M-continuous functions in biminimal structure spaces. Far East Journal of Mathematical Sciences, 43(1):41–58, 2010.
- [16] C. Boonpok and N. Srisarakham. (τ_1, τ_2) -continuity for functions. Asia Pacific Journal of Mathematics, 11:21, 2024.
- [17] C. Boonpok and P. Pue-on. Characterizations of almost (τ_1, τ_2) -continuous functions. International Journal of Analysis and Applications, 22:33, 2024.
- [18] C. Boonpok and C. Klanarong. On weakly (τ_1, τ_2) -continuous functions. European Journal of Pure and Applied Mathematics, 17(1):416–425, 2024.
- [19] P. Pue-on, S. Sompong, and C. Boonpok. Slightly (τ_1, τ_2) s-continuous functions. International Journal of Mathematics and Computer Science, 20(1):217–221, 2025.
- [20] B. Kong-ied, S. Sompong, and C. Boonpok. Almost quasi (τ_1, τ_2) -continuous functions. Asia Pacific Journal of Mathematics, 11:64, 2024.

N. Viriyapong, A. Sama-Ae, C. Boonpok / Eur. J. Pure Appl. Math, 18 (2) (2025), 6008 12 of 15

- [21] M. Chiangpradit, S. Sompong, and C. Boonpok. Weakly quasi (τ_1, τ_2) -continuous functions. International Journal of Analysis and Applications, 22:125, 2024.
- [22] M. Thongmoon, S. Sompong, and C. Boonpok. Rarely (τ_1, τ_2) -continuous functions. International Journal of Mathematics and Computer Science, 20(1):423–427, 2025.
- [23] N. Srisarakham, A. Sama-Ae, and C. Boonpok. Characterizations of faintly (τ_1, τ_2) -continuous functions. European Journal of Pure and Applied Mathematics, 17(4):2753-2762, 2024.
- [24] C. Prachanpol, C. Boonpok, and C. Viriyapong. $\delta(\tau_1, \tau_2)$ -continuous functions. European Journal of Pure and Applied Mathematics, 17(4):3730–3742, 2024.
- [25] N. Srisarakham, S. Sompong, and C. Boonpok. Quasi $\theta(\tau_1, \tau_2)$ -continuous functions. European Journal of Pure and Applied Mathematics, 18(1):5722, 2025.
- [26] J. Khampakdee, S. Sompong, and C. Boonpok. Almost weakly (τ_1, τ_2) -continuous functions. European Journal of Pure and Applied Mathematics, 18(1):5721, 2025.
- [27] B. Kong-ied, A. Sama-Ae, and C. Boonpok. Almost nearly (τ_1, τ_2) -continuous functions. International Journal of Analysis and Applications, 23:14, 2025.
- [28] J. Dontchev. Contra-continuous functions and strongly S-closed spaces. International Journal of Mathematics and Mathematical Sciences, 19:303–310, 1966.
- [29] J. Dontchev and T. Noiri. Contra-semicontinuous functions. *Mathematica Pannonica*, 10:159–168, 1999.
- [30] S. Jafari and T. Noiri. On contra-precontinuous functions. Bulletin of the Malaysian Mathematical Sciences Society, 25:115–128, 2002.
- [31] E. Ekici. Almost contra-precontinuous functions. Bulletin of the Malaysian Mathematical Sciences Society, 27:53–65, 2004.
- [32] J. Dontchev, M. Ganster, and I. Reilly. More on almost s-continuity. Indian Journal of Mathematics, 41:139–146, 1999.
- [33] T. Noiri, B. Ahmad, and M. Khan. Almost s-continuous functions. Kyungpook Mathematical Journal, 35:311–322, 1995.
- [34] T. Noiri. Super-continuity and some strong forms of continuity. Indian Journal of Pure and Applied Mathematics, 15:241–250, 1984.
- [35] E. Ekici, S. Jafari, and T. Noiri. On upper and lower contra-continuous multifunctions. Analele Științifice ale Universității Al. I. Cuza din Iași Matematică, 54(1):75– 85, 2008.
- [36] T. Noiri and V. Popa. Almost weakly continuous multifunctions. Demonstratio Mathematica, 26:363–380, 1993.
- [37] C. Boonpok. $(\tau_1, \tau_2)\delta$ -semicontinuous multifunctions. *Heliyon*, 6:e05367, 2020.
- [38] C. Boonpok and C. Viriyapong. Upper and lower almost weak (τ_1, τ_2) -continuity. European Journal of Pure and Applied Mathematics, 14(4):1212–1225, 2021.
- [39] C. Viriyapong and C. Boonpok. Weak quasi (Λ, sp) -continuity for multifunctions. International Journal of Mathematics and Computer Science, 17(3):1201–1209, 2022.
- [40] C. Boonpok. On continuous multifunctions in ideal topological spaces. Lobachevskii Journal of Mathematics, 40(1):24–35, 2019.
- [41] C. Boonpok. Upper and lower $\beta(\star)$ -continuity. *Heliyon*, 7:e05986, 2021.
- [42] C. Boonpok and J. Khampakdee. Upper and lower α -*-continuity. European Journal

N. Viriyapong, A. Sama-Ae, C. Boonpok / Eur. J. Pure Appl. Math, **18** (2) (2025), 6008 13 of 15

of Pure and Applied Mathematics, 17(1):201–211, 2024.

- [43] C. Boonpok and N. Srisarakham. Almost α-*-continuity for multifunctions. International Journal of Analysis and Applications, 21:107, 2023.
- [44] C. Boonpok. Weak quasi continuity for multifunctions in ideal topological spaces. Advances in Mathematics: Scientific Journal, 9(1):339–355, 2020.
- [45] C. Boonpok and P. Pue-on. Upper and lower weakly α-*-continuous multifunctions. International Journal of Analysis and Applications, 21:90, 2023.
- [46] C. Boonpok and P. Pue-on. Upper and lower sβ(*)-continuous multifunctions. European Journal of Pure and Applied Mathematics, 16(3):1634–1646, 2023.
- [47] C. Boonpok and J. Khampakdee. Upper and lower weak sβ(*)-continuity. European Journal of Pure and Applied Mathematics, 16(4):2544–2556, 2023.
- [48] C. Boonpok. θ(*)-quasi continuity for multifunctions. WSEAS Transactions on Mathematics, 21:245–251, 2022.
- [49] C. Boonpok and P. Pue-on. Continuity for multifunctions in ideal topological spaces. WSEAS Transactions on Mathematics, 19:624–631, 2020.
- [50] C. Boonpok and P. Pue-on. Upper and lower weakly (Λ, sp) -continuous multifunctions. European Journal of Pure and Applied Mathematics, 16(2):1047–1058, 2023.
- [51] J. Khampakdee and C. Boonpok. Upper and lower $\alpha(\Lambda, sp)$ -continuous multifunctions. WSEAS Transactions on Mathematics, 21:684–690, 2022.
- [52] C. Boonpok and J. Khampakdee. On almost $\alpha(\Lambda, sp)$ -continuous multifunctions. European Journal of Pure and Applied Mathematics, 15(2):626–634, 2022.
- [53] C. Boonpok and M. Thongmoon. Weak $\alpha(\Lambda, sp)$ -continuity for multifunctions. European Journal of Pure and Applied Mathematics, 16(1):465–478, 2023.
- [54] M. Thongmoon and C. Boonpok. Upper and lower almost $\beta(\Lambda, sp)$ -continuous multifunctions. WSEAS Transactions on Mathematics, 21:844–853, 2022.
- [55] C. Boonpok and J. Khampakdee. Slight (Λ, sp) -continuity and Λ_{sp} -extremally disconnectedness. European Journal of Pure and Applied Mathematics, 15(3):1180–1188, 2022.
- [56] P. Pue-on, S. Sompong, and C. Boonpok. Upper and lower (τ_1, τ_2) -continuous mulfunctions. International Journal of Mathematics and Computer Science, 19(4):1305– 1310, 2024.
- [57] C. Klanarong, S. Sompong, and C. Boonpok. Upper and lower almost (τ_1, τ_2) continuous multifunctions. European Journal of Pure and Applied Mathematics, 17(2):1244–1253, 2024.
- [58] M. Thongmoon, S. Sompong, and C. Boonpok. Upper and lower weak (τ_1, τ_2) continuity. European Journal of Pure and Applied Mathematics, 17(3):1705–1716, 2024.
- [59] P. Pue-on, S. Sompong, and C. Boonpok. Weakly quasi (τ_1, τ_2) -continuous multifunctions. European Journal of Pure and Applied Mathematics, 17(3):1553–1564, 2024.
- [60] P. Pue-on, S. Sompong, and C. Boonpok. Almost quasi (τ_1, τ_2) -continuity for multifunctions. International Journal of Analysis and Applications, 22:97, 2024.
- [61] J. Khampakdee, S. Sompong, and C. Boonpok. c- (τ_1, τ_2) -continuity for multifunctions. European Journal of Pure and Applied Mathematics, 17(3):2289–2299, 2024.

- [62] P. Pue-on, A. Sama-Ae, and C. Boonpok. c-quasi (τ_1, τ_2) -continuous multifunctions. European Journal of Pure and Applied Mathematics, 17(4):3242–3253, 2024.
- [63] N. Viriyapong, S. Sompong, and C. Boonpok. Upper and lower s_{τ_1,τ_2} -continuous multifunctions. European Journal of Pure and Applied Mathematics, 17(3):2210–2220, 2024.
- [64] C. Viriyapong, S. Sompong, and C. Boonpok. Upper and lower slight $\alpha(\tau_1, \tau_2)$ continuity. European Journal of Pure and Applied Mathematics, 17(3):2142–2154, 2024.
- [65] N. Viriyapong, S. Sompong, and C. Boonpok. Slightly $(\tau_1, \tau_2)p$ -continuous multifunctions. International Journal of Analysis and Applications, 22:152, 2024.
- [66] B. Kong-ied, S. Sompong, and C. Boonpok. Rarely $s_{-}(\tau_1, \tau_2)p_{-}$ continuous multifunctions. European Journal of Pure and Applied Mathematics, 18(1):5649, 2025.
- [67] N. Chutiman, A. Sama-Ae, and C. Boonpok. Almost near (τ_1, τ_2) -continuity for multifunctions. European Journal of Pure and Applied Mathematics, 18(1):5650, 2025.
- [68] M. Chiangpradit, A. Sama-Ae, and C. Boonpok. $s_{-}(\tau_1, \tau_2)$ -continuity for multifunctions. European Journal of Pure and Applied Mathematics, 18(1):5634, 2025.
- [69] P. Pue-on, A. Sama-Ae, and C. Boonpok. Quasi $\theta(\tau_1, \tau_2)$ -continuity for multifunctions. European Journal of Pure and Applied Mathematics, 18(1):5717, 2025.
- [70] J. Khampakdee, A. Sama-Ae, and C. Boonpok. Almost nearly quasi (τ_1, τ_2) continuous multifunctions. European Journal of Pure and Applied Mathematics, 18(1):5720, 2025.
- [71] P. Pue-on, A. Sama-Ae, and C. Boonpok. Upper and lower weakly $s_{-}(\tau_1, \tau_2)$ continuous multifunctions. European Journal of Pure and Applied Mathematics, 18(1):5718, 2025.
- [72] M. Thongmoon, A. Sama-Ae, and C. Boonpok. Upper and lower near (τ_1, τ_2) continuity. European Journal of Pure and Applied Mathematics, 18(1):5633, 2025.
- [73] M. Chiangpradit, S. Sompong, and C. Boonpok. Upper and lower almost quasi (τ_1, τ_2) -continuity. Asia Pacific Journal of Mathematics, 12:12, 2025.
- [74] E. Ekici, S. Jafari, and V. Popa. On contra-precontinuous and almost contraprecontinuous multifunctions. Journal of Advanced Research in Pure Mathematics, 2(1):11-25, 2010.
- [75] E. Ekici, S. Jafari, and V. Popa. On almost contra-continuous multifunctions. Lobachevskii Journal of Mathematics, 30(2):124–131, 2009.
- [76] C. Boonpok and J. Khampakdee. Upper and lower almost contra- (Λ, sp) -continuity. European Journal of Pure and Applied Mathematics, 16(1):156–168, 2023.
- [77] C. Boonpok, C. Viriyapong, and M. Thongmoon. On upper and lower (τ_1, τ_2) precontinuous multifunctions. Journal of Mathematics and Computer Science, 18:282-293, 2018.
- [78] N. Viriyapong, S. Sompong, and C. Boonpok. (τ_1, τ_2) -extremal disconnectedness in bitopological spaces. International Journal of Mathematics and Computer Science, 19(3):855-860, 2024.
- [79] C. Viriyapong and C. Boonpok. $(\tau_1, \tau_2)\alpha$ -continuity for multifunctions. Journal of Mathematics, 2020:6285763, 2020.

- N. Viriyapong, A. Sama-Ae, C. Boonpok / Eur. J. Pure Appl. Math, 18 (2) (2025), 6008 15 of 15
- [80] N. Srisarakham, S. Sompong, and C. Boonpok. Characterizations of contra- (τ_1, τ_2) continuous functions. (submitted).