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Abstract. The clique domination number of some special graphs such as paths, cycles, complete
graphs, generalized wheels, generalized fans, and complete bipartite graphs is presented. The
forcing clique domination number of these graphs, along with binary operations such as join,
corona, and lexicographic product of two graphs, is also determined. Connected graphs with
forcing clique domination number equal to 0, 1, or a, where a is greater than 1 but less than the
clique domination number, are characterized. Necessary and sufficient conditions for the forcing
clique domination number to be equal to the clique domination number are given. Since some of
the graphs in this study do not have a clique dominating set, the forcing clique domination number
is undefined in those cases.
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1. Introduction

Let G = (V (G), E(G)) be a graph.For any vertex t ∈ V (G),the closed neighborhood
of t is defined as the set NG[t] = {t} ∪ {s ∈ V (G) : st ∈ E(G)}. If T is a nonempty
subset of X, then NG[T ] =

⋃
t∈T

NG[t]. A nonempty set T ⊆ V (G) is a dominating set of G

if for every u ∈ V (G)\T , there exists t ∈ T such that tu ∈ E(G), that is, NG[T ] = V (G).
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The domination number of G, denoted by γ(G), is the minimum cardinality among all
dominating sets of G. A γ-set T of G is a dominating set of G with |T | = γ(G).

A graph is complete if every two of its vertices are adjacent. Let G be a nontrivial
connected graph. A dominating set C of V (G) is a clique dominating set of G if the
induced subgraph ⟨C⟩ of C is complete. The minimum cardinality of a clique dominating
set of G, denoted by γcl(G),is called the clique domination number of G. A γcl-set C of G is
a clique dominating set of G with |C| = γcl(G). Graph G is considered a non−γcl−graph
if it does not contain a clique dominating set, following a similar definition to that of a
non-γp0-graph as in [1].

Let C be a γcl-set of a graph G. A subset L of C is said to be a forcing subset for C if C
is the unique γcl-set containing L. The forcing clique domination number of C is given by
fγcl(C) = min{|L| : L is a forcing subset for C}. The forcing clique domination number of
G is given by

fγcl(G) = min{fγcl(C) : C is a γcl-set of G}

The join of two graphs G and H, denoted by G+H, is the graph with vertex set

V (G+H) = V (G) ∪ V (H)

and edge set E(G+H) = E(G) ∪ E(H) ∪ {uv : u ∈ V (G), v ∈ V (H)}.

The corona of two graphs G and H, denoted by G◦H, is defined to be the graph obtained by
taking one copy of G and |V (G)| copies of H and then forming the joins ⟨v⟩+Hv = v+Hv

for each v ∈ V (G), where Hv is a copy of H correponding to vertex v.

The lexicographic product or composition of two graphs G and H, denoted by G[H], is
the graph with vertex set V (G[H]) = V (G) × V (H) and edge set E(G[H]) satisfying the
following conditions: (x, u)(y, v) ∈ E(G[H]) if and only if either xy ∈ E(G) or x = y
and uv ∈ E(H). Observe that a subset C of V (G[H]) = V (G)× V (H) can be written as
C =

⋃
x∈S

[{x} × Tx], where S ⊆ V (G) and Tx ⊆ V (H) for each x ∈ S. We shall use this

form to denote any subset C of V (G[H]).

The clique domination was investigated in [2] and [3]. The concept of forcing domination
was first studied by Chartrand, et al. in [4]. Closed neighborhood, domination
number, forcing domination number, the binary operations such as join, corona and
lexicographic product of graphs, and other variations of forcing domination can be found
in [5],[6],[7],[8] and [9]. Additional basic graph-theoretic terminology can be found in [10].

The forcing clique domination number is important when it comes to fault-tolerant
sensor network optimization in smart cities. Sensors are placed in these networks to monitor
infrastructure, health, traffic, and air quality. Certain sensor groups naturally form cliques,
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which are fully connected subgraphs that guarantee effective data sharing. These sensors
create graphs with edges that indicate direct communication links. To guarantee smooth
network coverage, a clique dominating set ensures that each sensor is either inside a clique
or directly connected to one [11]. This structure is improved by the forcing property, which
ensures that the activation of a small number of important sensors triggers the activation
of others, reducing redundancy and increasing data collection and transmission efficiency
[12]. This ensures that the network continues to operate with low resource consumption
even in the event that certain sensors fail [13].

In addition to energy efficiency, the forcing clique domination number improves fault
tolerance and sensor network resilience. The system can tolerate failures and continue
to function by carefully choosing a minimum clique dominating set. This is particularly
helpful in fields where dependability is essential, such as emergency response systems,
military communication, and disaster monitoring [14].

Example 1.1. Consider the graph G in Figure 1. It is clear to see that

R1 = {x, u1},
R2 = {x, u2},
R3 = {x, u3},

...
Rm−1 = {x, um−1}, and
Rm = {x, um}

are γcl-sets of G. Clearly, for all i = 1, 2, . . . ,m, Ti = {ui} is uniquely contained in each
γcl-set Ri of G and so, Ti is a forcing subset for each Ri. Thus, fγcl(G) = |Ti| = 1.

Figure 1: Graph G with fγcl(G) = 1.
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Example 1.2. Consider the graph G[H] in Figure 2. Clearly, γcl(G) = 3. By Corollary
2.10, γcl(G[H]) = 3. It is clear to see that

S1 = {(a, x), (b, x), (c, x)}, S10 = {(a, y), (b, x), (c, x)}, S19 = {(a, z), (b, x), (c, x)},
S2 = {(a, x), (b, x), (c, y)}, S11 = {(a, y), (b, x), (c, y)}, S20 = {(a, z), (b, x), (c, y)},
S3 = {(a, x), (b, x), (c, z)}, S12 = {(a, y), (b, x), (c, z)}, S21 = {(a, z), (b, x), (c, z)},
S4 = {(a, x), (b, y), (c, x)}, S13 = {(a, y), (b, y), (c, x)}, S22 = {(a, z), (b, y), (c, x)},
S5 = {(a, x), (b, y), (c, y)}, S14 = {(a, y), (b, y), (c, y)}, S23 = {(a, z), (b, y), (c, y)},
S6 = {(a, x), (b, y), (c, z)}, S15 = {(a, y), (b, y), (c, z)}, S24 = {(a, z), (b, y), (c, z)},
S7 = {(a, x), (b, z), (c, x)}, S16 = {(a, y), (b, z), (c, x)}, S25 = {(a, z), (b, z), (c, x)},
S8 = {(a, x), (b, z), (c, y)}, S17 = {(a, y), (b, z), (c, y)}, S26 = {(a, z), (b, z), (c, y)}, and
S9 = {(a, x), (b, z), (c, z)}, S18 = {(a, y), (b, z), (c, z)}, S27 = {(a, z), (b, z), (c, z)}

are γcl-sets of G[H]. Clearly, there exists no subset with 1 and 2 vertices that it is contained
in a unique γcl-set of G[H]. Thus, for all i = 1, 2, . . . , 27, Si is a forcing subset for itself
and so, fγcl(G[H]) = |Si| = 3 = γcl(G[H]).

Figure 2: Graph G[H] with fγcl(G[H]) = 3.
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2. Known Results

This section presents known results on the domination number and the clique domination
number of a graph G, and of graphs resulting from some binary operations.

Proposition 2.1. [15] For n ≥ 3,

γ(Pn) = γ(Cn) =
⌈n
3

⌉
.

Proposition 2.2. [16] If n is a positive integer , then γ(Kn) = 1.

Theorem 2.3. [2] Let G be a connected graph. Then γcl(G) = 1 if and only if γ(G) = 1.

Theorem 2.4. [2] Let G and H be any two graphs. A subset S of V (G+H) is a clique
dominating set of G+H if and only if one of the following statements holds:

(i) S is clique dominating set of G
(ii) S is a clique dominating set of H.
(iii) S = S1 ∪ S2, where ⟨S1⟩ and ⟨S2⟩ are cliques in G and H, respectively.

Corollary 2.5. [2] Let G and H be nontrivial graphs . Then

γcl(G+H) =

{
1, if γ(G) = 1 or γ(H) = 1

2, otherwise

Theorem 2.6. [3] If G is a finite graph that is connected and has no induced P5 or C5,
then G has a clique dominating set.

Theorem 2.7. [2] Let G be a connected nontrivial graph and H be any non-trivial graph.
Then G ◦H has a clique dominating set S if and only if G is complete and S = V (G).

Corollary 2.8. [2] Let G be a complete nontrivial graph and H be any graph.Then

γcl(G ◦H) = |V (G)|.

Theorem 2.9. [2] Let G and H be connected nontrivial graphs such that G has a clique
dominating set. A subset C =

⋃
x∈S

[{x} × Tx], where S ⊆ V (G) and Tx ⊆ V (H) for each

x ∈ S, is a clique dominating set of G[H] if and only if S is a clique dominating set of G
such that

(i) ⟨Tx⟩ is a clique in H for each x ∈ S and
(ii) Tx is a dominating set of H whenever S = {x}.
Corollary 2.10. [2] Let G and H be connected nontrivial graphs such that G has a clique
dominating set.Then

γcl(G[H]) =


1, if γ(G) = γ(H) = 1

2, if γ(G) = 1 and γ(H) ̸= 1

γcl(G), ifγ(G) ̸= 1
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3. Main Results

This section presents the clique domination number and the forcing clique domination
number of special graphs such as paths, cycles, complete graphs and other special graphs
such as generalized wheels, generalized fans, and complete bipartite graphs. In addition,
the forcing clique domination number is determined for graphs obtained through some
binary operations such as the join, corona, and lexicographic product of two graphs.

Theorem 3.1. Let G be a connected graph such that G has a clique dominating set. Then

(i) fγcl(G) = 0 if and only if G contains a unique γcl-set.

(ii) fγcl(G) = 1 if and only if G has no unique γcl-sets and there exists a vertex t ∈ V (G)
which is contained in exactly one γcl-set of G.

(iii) for any integer a such that 1 < a < γcl(G), fγcl(G) = a if and only if G has no unique
γcl-sets and a is the minimum number of vertices which are contained in exactly one γcl-set
of G.

Proof: (i) Suppose that fγcl(G) = 0. It follows that ∅ is the forcing subset for a γcl-set in
G. Suppose that G has two γcl-sets, say C and D. Then ∅ is a forcing subset for C and
D, a contradiction since a forcing subset must be contained in a unique γcl-set. Therefore,
G contains a unique γcl-set. Conversely, if G contains a unique γcl-set, say B. Clearly, ∅
is a forcing subset of B. Hence, |∅| = 0 = fγcl(B) = fγcl(G).
(ii) Suppose that fγcl(G) = 1. By part (i), G has no unique γcl-set and there exist
γcl-set, say T , and t ∈ T such that {t} is a forcing subset for T and fγcl(T ) = |{t}| = 1,
that is, {t} is not forcing subset for another γcl-set of G. Thus, there exists a vertex
t ∈ V (G) which is contained in exactly one γcl-set of G. Conversely, if G has no unique
γcl-sets , then by part (i), fγcl(G) ≥ 1. By assumption, there exists a vertex, say c, which
is contained in exactly one γcl-set of G, say C, that is, {c} is a forcing subset for C. There-
fore, fγcl(C) = |{c}| = 1 = fγcl(G).
(iii) Suppose that fγcl(G) = a for any integer a such that 1 < a < γcl(G). By part (i),
G has no unique γcl-sets and there exists a unique γcl-set, say T , and |S| = a such that
S is a forcing subset for T and fγcl(G) = a = |S| = fγcl(T ). Hence, a is the minimum
number of vertices which are contained in exactly one γcl-set of G. Conversely, if G has
no unique γcl-sets, then by part (i), fγcl(G) ≥ 1. By assumption, there exists a set S such
that |S| = a > 1, S is contained in exactly one γcl-set of G, say C, that is, S is a forcing
subset for C. By the minimality of a, a = |S| = fγcl(C) = fγcl(G).

The next two results are direct consequences of Theorem 3.1 and definition of forcing clique
domination.

Corollary 3.2. Let G be a connected graph such that G has a clique dominating set. Then

0 ≤ fγcl(G) ≤ γcl(G).
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Theorem 3.3. Let G be a connected graph such that G has a clique dominating set. Then
fγcl(G) = γcl(G) if and only if for every γcl-set of C of G and for each vertex t ∈ C, there
exist a vertex u ∈ V (G)\C such that {u} ∪ [C\{t}] is a γcl-set of G.

Proof: Suppose that fγcl(G) = γcl(G). Let C be a γcl-set of G such that fγcl(G) =
|C| = γcl(G), that is, C is the only forcing subset for C. Let t ∈ C. Since C\{t} is not
a forcing subset for C, there exists a u ∈ V (G)\C such that{u} ∪ [C\{t}] is a γcl-set of
G. Conversely, suppose that everyγcl-set C ′ of G satisfies the given condition. Let C be
a γcl-set of G such that fγcl(G) = fγcl(C) and |C| = γcl(G). Moreover, suppose that C
has a forcing subset D with |D| < |C|, that is ,C = D ∪ A, where A = {t ∈ C : t /∈ D}.
Pick t ∈ A. By assumption, there exists u ∈ V (G)\C such that {u} ∪ [C\{t}] = B is a
γcl-set of G. Thus,B = D ∪E, where E = {u} ∪ [A\{t}], that is, B is a γcl-set containing
D , a contradiction. Thus, |D| = |C| and |C| is the only forcing subset for |C|. Therefore,
fγcl(G) = fγcl(C) = |C| = γcl(G).

The next result is a restatement of Theorem 3.3.

Remark 3.4. Let G be a connected graph such that G has a clique dominating set. Then
fγcl(G) = γcl(G) if and only if every vertex in a γcl-set C of G can be replaced by another
vertex in V (G)\C to form another γcl-set of G.

Proposition 3.5. Let n be a positive integer with n ≥ 1. Then the clique domination
number of a path Pn and its forcing clique domination number are given by

γcl(Pn) =

{
1, n < 4

2, n = 4

and

fγcl(Pn) =

{
0, n = 1, 3, 4

1, n = 2

. For n ≥ 5, the path Pn is non−γcl−graph, and both γcl(Pn) and fγcl(Pn) are undefined.

Proof: Let V (Pn) = {u1, u2, . . . , un}. Consider the following cases:

Case 1. Let n = 1. Clearly, {u1} is the only minimum clique dominating set of P1. Thus,
γcl(P1) = 1 and fγcl(P1) = 0 by Theorem 3.1 (i).

Case 2. Let n = 2. By Proposition 2.1, γ(P2) = ⌈23⌉ = 1 and by Theorem 2.3, γcl(P2) = 1.
Clearly, S1 = {u1} and S2 = {u2} are the γcl-sets of P2, that is, the vertex u1 is contained
in S1 only. Thus, fγcl(P2) = 1 by Theorem 3.1 (ii).

Case 3. Let n = 3. By Proposition 2.1, γ(P3) = ⌈33⌉ = 1 and by Theorem 2.3, γcl(P3) = 1.
Clearly, {u2} is the only γcl-set of P3. Thus, fγcl(P3) = 1 by Theorem 3.1 (ii).
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Case 4. Let n = 4. By Proposition 2.1, γ(P4) = ⌈43⌉ = 2 and by Theorem 2.3, γcl(P4) > 1.
Clearly, C = {u2, u3} is the only γcl-sets of P4 since the induced subgraph ⟨C⟩ of C is com-
plete. Thus,γcl(P4) = 2 and fγcl(P4) = 0 by Theorem 3.1 (i).

Case 5. Let n ≥ 5. Then Pn has induced P5. By Theorem 2.6, Pn has no clique dominating
set. Therefore, for all n ≥ 5, Pn is non − γcl − graph, and both γcl(Pn) and fγcl(Pn) are
undefined.

Proposition 3.6. Let n be a positive integer with n ≥ 3. Then the clique domination
number and forcing clique domination number of a cycle Cn are equal and given by

fγcl(Cn) = γcl(Cn) =

{
1, n = 3

2, n = 4

For n ≥ 5, the cycle Cn is non−γcl−graph, and both γcl(Cn) and fγcl(Cn) are undefined.

Proof: Let V (Cn) = {u1, u2, . . . , un}. Consider the following cases:

Case 1. Let n = 3. Then by Proposition 2.1, γ(C3) =
⌈
3
3

⌉
= 1 and by Theorem 2.3,

γcl(C3) = 1. Clearly, S1 = {u1}, S2 = {u2} and S3 = {u3} are the γcl-sets of C3, that is,
the vertex u1 is contained in S1 only. By Theorem 3.1(ii), fγcl(C3) = 1.

Case 2. Let n = 4. By Proposition 2.1, γ(C4) =
⌈
4
3

⌉
= 2. Clearly, T1 = {u1, u2},

T2 = {u2, u3}, T3 = {u3, u4} and T4 = {u4, u1} are the γcl-sets of C4, such that for all
i = 1, 2, 3, 4, the induced subgraph ⟨Ti⟩ of Ti is complete. Thus, γcl(C4) = 2. Clearly,
every vertex in γcl-set Tk of C4 can be replaced by another vertex in V (C4)\Tk to form
another γcl-set Tj such that k ̸= j. By Remark 3.4, fγcl(C4) = γcl(C4) = 2.

Case 3. Let n ≥ 5. Then Cn has induced P5. By Theorem 2.6, Cn has no clique
dominating set. Therefore, for all n ≥ 5, Cn is non − γcl − graph, and both γcl(Cn) and
fγcl(Cn) are undefined.

Proposition 3.7. Let n be a positive integer with n ≥ 1. Then the clique domination
number of the complete graph Kn is given by γcl(Kn) = 1 and forcing clique domination
number is given by

fγcl(Kn) =

{
0, n = 1

1, n ≥ 2.

Proof: Let V (Kn) = {u1, u2, u3 . . . , un}. By Proposition 2.2, γ(Kn) = 1 and by Theorem
2.3, γcl(Kn) = 1. If n = 1, then {u1} is the only γcl-set of K1. Thus, fγcl(K1) = 0 by
Theorem 3.1(i). Suppose that n ≥ 2. Then for all i = 1, 2, . . . , n, Si = {ui} is a γcl-set of
Kn, that is, the vertex ui is contained in Si only. By Theorem 3.1 (ii), fγcl(Kn) = 1 for
all n ≥ 2.
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Theorem 3.8. Let G and H be any graphs. Then

fγcl(G+H) =



0, if either γ(G) = 1 < γ(H) andGhas a unique γ − set,

or γ(H) = 1 < γ(G) andH has a unique γ − set

1, if either γ(G) = 1 < γ(H) andGhasno unique γ − set,

orγ(H) = 1 < γ(G) andH hasno unique γ − set

or γ(G) = 1 and γ(H) = 1

2, if γ(G) > 1 and γ(H) > 1.

Proof: Consider the following cases:
Case 1. Suppose that γ(G) = 1 < γ(H) and G has unique γ-set. By Corollary 2.5,
γcl(G+H) = 1. Suppose that S is the unique γ-set of G. Then |S| = 1, say S = {u} for a
unique vertex u of V (G) and by Theorem 2.3, S is a γcl-set of G. By Theorem 2.4, S is the
only γcl-set of G+H. By Theorem 3.1 (i), fγcl(G+H) = 0. Similarly, fγcl(G+H) = 0
if γ(H) = 1 < γ(G) and H has a unique γ-set.

Case 2. Suppose that γ(G) = 1 < γ(H) and G has no unique γ-set.
By Corollary 2.5, γcl(G + H) = 1. Let S and T be γ-sets of G. Then |S| = |T | = 1
and by Theorem 2.3, S and T are γcl-sets of G. Thus, S and T are γcl-sets of G + H
by Theorem 2.4. Then there exists a vertex u contained in S only. By Theorem 3.1(ii),
fγcl(G+H) = 1. Similarly, fγcl(G+H) = 1 if γ(H) = 1 < γ(G) and H has no unique γ-set.

Case 3. Suppose that γ(G) = 1 and γ(H) = 1.
By Corollary 2.5, γcl(G + H) = 1. Let S and R be γ-set of G and H, respectively. By
Theorem 2.3, S and R are γcl-sets of G and H, respectively. Then by Theorem 2.4, S and
R are γcl-sets of G +H. Then there exists a vertex u contained in S only. By Theorem
3.1(ii), fγcl(G+H) = 1.

Case 4. Suppose that γ(G) > 1 and γ(H) > 1.
By Corollary 2.5, γcl(G+H) = 2. Consider a γcl-set S = {c, d} of G+H, where c ∈ V (G)
and d ∈ V (H). Pick x ∈ V (G)\{c} and y ∈ V (H)\{d}. Then {c} ⊆ Sy = {c, y} and
{d} ⊆ Sx = {x, d}, where Sx and Sy are also γcl-sets of G + H different from S. Thus,
fγcl(S) = 2. Now, if γ(G) = 2, then by Theorem 2.3, γcl(G) ̸= 1. Thus,γcl(G) = 2 or
γcl(G) is undefined. Suppose that γcl(G) is undefined. Then the set T = {e, f}, where
e ∈ V (G) and f ∈ V (H), is a γcl-set of G +H. By the previous argument, fγcl(T ) = 2.
Suppose that γcl(G) = 2. Let S′ = {g, h} be a γcl-set of G and by Theorem 2.4, S′ is
also a γcl-set of G +H. Pick v ∈ V (H). Then {g} ⊆ Sg = {g, v} and {h} ⊆ Sh = {h, v}
where Sg and Sh are γcl-sets of G+H different from S′. Thus, fγcl(S′) = 2. Similarly, if
γ(H) = 2, then for any γcl-set S∗ of G+H, fγcl(S∗) = 2. In any case, fγcl(G+H) = 2.

The next result follows from Theorem 3.8 and Corollary 2.5.
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Corollary 3.9. For any graph H, γcl(K1 +H) = 1 and

fγcl(K1 +H) =

{
0, γ(H) > 1,

1, γ(H) = 1.

The next results are direct consequences of Theorem 3.8, and Corollaries 2.5 and 3.9.

Corollary 3.10. Let n and m be positive integers. For a complete bipartite graph
Kn,m = Kn +Km where n ≥ 1 and m ≥ 1,

γcl(Kn,m) =

{
1, if either n = 1 orm = 1,

2, if n ≥ 2 andm ≥ 2.

and

fγcl(Kn,m) =


0, if n = 1 andm ≥ 2 orm = 1 andn ≥ 2,

1, if n = 1 andm = 1 ,

2, if n ≥ 2 andm ≥ 2.

Corollary 3.11. For the generalized fan Fn,m = Kn + Pm, where n ≥ 1 and m ≥ 2,

γcl(Fn,m) =

{
1, if either n = 1 orm < 4,

2, if n ≥ 2 andm ≥ 4.

and

fγcl(Fn,m) =


0, if either n = 1 andm ≥ 4 or n ≥ 2 andm = 3,

1, if either n = 1 andm < 4 or n ≥ 2 andm = 2,

2, if n ≥ 2 andm ≥ 4.

Corollary 3.12. For the generalized wheel Wn,m = Kn + Cm, where n ≥ 1 and m ≥ 3,

γcl(Wn,m) =

{
1, if either n = 1 orm = 3,

2, if n ≥ 2 andm ≥ 4.

and

fγcl(Wn,m) =


0, if n = 1 andm ≥ 4,

1, if m = 3,

2, if n ≥ 2 andm ≥ 4.

Theorem 3.13. Let G be a trivial graph and H be any graph. Then S is a γcl-set of
G ◦ H if and only if S = V (G) or S is a γ-set of H such that γ(H) = 1. In particular,
γcl(G ◦H) = 1.

Proof: Since G is trivial and G ◦ H = K1+H, by Corollary 3.9, γcl(C ◦ H) = 1. Suppose
that S is a γcl-set of G ◦H. Since G is trivial, S = V (G) since V (G) is a dominating set
of G ◦ H and V (G) is complete. Suppose that γ(H) = 1. By Theorem 2.3, γcl(H) = 1.
Then there exists a vertex v in H such that v is adjacent to every vertex in H \ {v} and
to a vertex in G. Take S = {v} and so, S is a γ-set of H. The converse is clear.
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Theorem 3.14. Let G be a complete graph and H be any graph. Then

fγcl(G ◦ H) =

{
0, if either G is nontrivial or G is trivial and γ(H) > 1,

1, if G is trivial and γ(H) = 1.

Proof: Note that by Corollary 2.8, γcl(G ◦H) = |V (G)|. Since G is complete, V (G) is a
γcl-set of G ◦H. Let S be a γcl-set of G ◦H. Consider the following cases:

Case 1. Suppose that G is nontrivial. By Theorem 2.7, S = V (G) is the only γcl-set of
G ◦H. By Theorem 3.1 (i), fγcl(G ◦H) = 0.

Case 2. Suppose that G is trivial and γ(H) > 1. By Theorem 3.13, S = V (G) is the only
γcl-set of G ◦H. By Theorem 3.1 (i), fγcl(G ◦H) = 0.

Case 3. Suppose that G is trivial and γ(H) = 1. By Theorem 3.13, γcl(G ◦H) = 1 and
either S = V (G) or S is the γ-set of H such that S is also γcl-set of G ◦H and |S| = 1.
Thus, G ◦H has no unique γcl-sets. Then there exists a vertex u contained in S only. By
Theorem 3.1 (ii), fγcl(G ◦H) = |S| = 1.

Theorem 3.15. Let G and H be connected nontrivial graphs such that G has a clique
dominating set. Then

fγcl(G[H]) =



0, if γ(G) = γ(H) = 1 and

bothGandH have unique γ − sets,

1, if γ(G) = γ(H) = 1 and

either G orH hasno unique γ − sets or both,

2, if γ(G) = 1 and γ(H) ̸= 1.

γcl(G), if γ(G) > 1,

Proof: Consider the following cases:

Case 1. Suppose that γ(G) = γ(H) = 1 and both G and H have unique γ-sets, say
S = {x} and T = {a}, respectively. By Corollary 2.10, γcl(G[H]) = 1 and by Theorem 2.3,
S and T are also γcl-sets of G and H, respectively. By Theorem 2.9, C = S×Tx = {(x, a)}
is the only γcl-set of G[H]. By Theorem 3.1 (i), fγcl(G[H]) = 0.

Case 2. Suppose that γ(G) = γ(H) = 1 and either G or H has no unique γ-sets or
both. By Corollary 2.10, γcl(G[H]) = 1. WLOG, suppose that G has no unique γ-sets,
say S1 = {x} and S2 = {y}, and also suppose that H has a γ-set, say T = {a}. By
Theorem 2.3, S1 and S2 are also γcl-sets of G and T is a γcl-sets of H. By Corollary 2.10,
γcl(G[H]) = 1. By Theorem 2.9, C1 =

⋃
x∈S1

[{x} × Tx] and C2 =
⋃

y∈S2

[{y} × Ty], where

S1, S2 ⊆ V (G) and Tx, Ty ⊆ V (H) for x ∈ S1 and y ∈ S2 such that |C1| = |C2| = 1 and
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set Tx = Ty = {a}, that is, C1 = {(x, a)} and C2 = {(y, a)} are the γcl-sets of G[H].
Clearly, the vertex (x, a) is contained in C1 only. By Theorem 3.1 (ii), fγcl(G[H]) = 1.
Similarly, if H has no unique γ-sets or both G and H have no unique γ-sets, fγcl(G[H]) = 1.

Case 3. Suppose that γ(G) = 1 and γ(H) ̸= 1.
By Corollary 2.10, γcl(G[H]) = 2. Let S = {x, y} be a clique dominating set of G such
that xy ∈ E(G). Choose any vertex a ∈ V (H). Then C = {(x, a), (y, a)} is a γcl-set
of G[H] by Theorem 2.9 and Corollary 2.10. Choose c ∈ V (H)\{a}. It follows that
{(x, a)} ⊆ C1 = {(x, a), (y, c)} and {(y, a)} ⊆ C2 = {(x, c), (y, a)}, where C1 and C2 are
also γcl-sets of G[H] different from C. It follows that fγcl(C) = 2 = fγcl(G[H]).

Case 4. Suppose that γ(G) > 1.
By Corollary 2.10, γcl(G[H]) = γcl(G). Let C =

⋃
x∈S [{x} × Tx] be a γcl-set of G[H] and

let FC =
⋃

x∈D [{x} × Fx] be a forcing subset for C. Suppose that S is a γcl-set of G.
Then |C| = |S| and so, |Tx| = 1 for all x ∈ S. Hence, Fx = Tx for all x ∈ D. If D ̸= S,
say y ∈ S\D, then FC ⊆ C ′ =

⋃
x∈S [{x} × T ′

x], where T ′
x = Tx for x ∈ S\{y} and T ′

y is
a singleton subset of H different from Ty. Since C ′ is a γcl-set of G[H] and C ′ ̸= C, FC

is not a forcing subset for C, contrary to the assumption. Thus, D = S, that is, FC = C.
Hence, fγcl(C) = |C| = γcl(G) = fγcl(G[H]).

The next result follows from Theorem 3.15.

Corollary 3.16. Let H be a connected nontrivial graph. Then for any complete nontrivial
graph Kn,

fγcl(Kn[H]) =

{
1, if γ(H) = 1,

2, if γ(H) ̸= 1.

Corollary 3.17. Let G and H be connected nontrivial graphs. Then for any complete
nontrivial graph Kn,

fγcl((Kn ◦ G)[H]) = n.

Proof: By Corollary 2.8, Kn ◦ G has a minimum clique dominating set and
γcl(Kn ◦ G) = |V (Kn)| = n such that n > 1 since Kn is nontrivial. By Theorem 2.3,
γ(Kn ◦ G) > 1. By Theorem 3.15 and Corollary 2.8,

fγcl((Kn ◦ G)[H]) = γcl(Kn ◦ G) = n.
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4. Conclusion

In this study, the idea of forcing clique domination in graphs was examined along with
its basic characteristics. We investigated how the forcing clique domination number and
the clique domination number relate to one another.

A significant result in our study when the forcing clique domination number is zero.
This happens when each minimum clique dominating set is uniquely determined. These
graphs are especially helpful in applications requiring stable and non-redundant control
because of their structural rigidity in clique domination properties.

Another important result is when the forcing clique domination number is equal to the
clique domination number. This implies that every vertex in a minimum clique dominating
set can be replaced by another vertex in the graph while still maintaining the property of
clique domination. This feature is important in fault-tolerant network topologies since it
will allow other nodes to assume dominance responsibilities without affecting connection
or coverage.

Also, we also discovered graphs for which the clique domination number is undefined,
as they do not have a clique dominating set, making the forcing clique domination number
itself undefined.

Our research sheds more light on the characteristics of forcing clique domination and
its function in graph theory. Future studies might concentrate on determining the forcing
clique domination number of other binary operations not mentioned in this study and
investigating real-world applications in social influence modeling, biological networks, and
network security.
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