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Abstract. In this article, we study some subclasses of Sakaguchi type bi-univalent functions as-
sociated with Gegenbauer polynomials and Einstein function. We explore certain properties of
functions belonging to these subclasses, including coefficient bounds and the Fekete–Szegö func-
tionals. This research generalise and improves the related works of several earlier authors.
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1. Introduction and Preliminaries

Let A signify the class of analytic functions written in the form

F(ξ) = ξ +
∞∑
n=2

anξ
n, ξ ∈ U = {ξ ∈ C : |ξ| < 1}, (1)

with normalization F(0) = 0,F ′(0) = 1. Define S as the subclass of univalent functions
in A.

An function F ∈ A is said to be starlike, denoted as S∗, if and only if

Re

(
ξF ′(ξ)

F(ξ)

)
> 0.

Similarly, F is convex, denoted as K, if and only if

Re

(
1 +

ξF ′′(ξ)

F ′(ξ)

)
> 0.
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If a function G ∈ A is given by

G(ξ) = ξ +
∞∑
n=2

bnξ
n, ξ ∈ U,

then the Hadamard product of two functions F and G is given by

(F ∗ G)(ξ) = ξ +

∞∑
n=2

anbnξ
n, ξ ∈ U.

If there exists an analytic Schwarz function Ω in U, such that for all ξ ∈ U, Ω satisfies
Ω(0) = 0, |Ω(ξ)| < 1 and F(ξ) = G(Ω(ξ)), then two analytic functions F and G can be
described as F is subordinate to G or G is superordinate to F . This relationship is written
as F ≺ G. If the function G is univalent in unit disk, then

F(ξ) ≺ G(ξ) ⇔ F(0) = G(0) and F(U) ⊂ G(U).

For more details on subordination principles, please refer to [1].
Koebe’s one-quarter theorem [2] stated that, if U is mapped by F biholomorphically

onto a domain ∆ in the complex plane, then each of its tangent disks of radius r will be
mapped onto a domain containing a disk of radius 1

4r. Hence, the following conditions
must be satisfied by function F ∈ A for its inverse map F−1 to exist:

F−1(F(ξ)) = ξ (ξ ∈ U) and F(F−1(w)) = w

(
|w| < r0(F); r0(F) ≥ 1

4

)
.

Inverse function F−1 of (1) can be conveyed as a power series of the form

G(ω) = F−1(ω) = ω − a2ω
2 + (2a22 − a3)ω

3 − (5a32 − 5a2a3 + a4)ω
4 + ... .

The class of bi-univalent functions, Σ, is a set of F ∈ A, in which both F and F−1 are
univalent in U. Examples of functions in class Σ include

−log(1− ξ),
ξ

1− ξ
,
1

2
log

(
1 + ξ

1− ξ

)
, ... .

It is noteworthy that the Koebe function is not bi-univalent, since it does not contain
U. To be precise, the image of Koebe function does not contain the slit of negative real
axis from −1

4 to −∞.
The coefficient bounds for functions of class Σ have been investigated since 1967, where

Lewin [3] showed that |a2| < 1.51. In addition to that, Brannan and Clunie [4] showed
that max

f∈Σ
|a2| =

√
2. Subsequently, Netanyahu [5] improved this bound to |a2| ≤ 4

3 . The

best non-sharp estimate |a2| < 1.485 was obtained in 1984 by Tan [6]. On the other hand,
the estimate for coefficients other than |a1| and |a2| for each F ∈ Σ is yet to be explored.
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Introduced by Sakaguchi [7], a function F ∈ S is described as starlike about symmetric
points, provided it satisfies the inequality

Re

(
ξF ′(ξ)

F(ξ)−F(−ξ)

)
> 0 (ξ ∈ U).

This class of functions is denoted by S∗
S .

On the other hand, Das and Singh [8] established another class of univalent functions
F which are convex about symmetric points. This family of functions, KS satisfy the
inequality

Re

(
(ξF ′(ξ))′

(F(ξ)−F(−ξ))′

)
> 0 (ξ ∈ U).

Two polynomials Pn and Pm of order n and m are said to be orthogonal, provided∫ b

a
w(x)Pn(x)Pm(x)dx = 0 for n ̸= m,

where w(x) is non-negative function in the interval (a, b). As described by [9], Gegenbauer
polynomials are special orthogonal polynomials which are typically associated with typi-
cally real functions. For α ∈ R − {0}, Gegenbauer polynomial is defined by a generating
function

Hα(x, ξ) =
1

(1− 2xξ + ξ2)α
,

where ξ ∈ U and x ∈ [−1, 1]. When x is fixed, the function Hα is analytic in U, therefore
it is possible to express Hα in the form of Taylor series expansion

Hα(x, ξ) =
∞∑
n=0

Cα
n (x)ξ

n,

where Cα
n (x) is a Gegenbauer polynomial of degree n.

Since H0 generates nothing, it is presumed to be

H0(x, ξ) = 1− log(1− 2xξ + ξ2) =
∞∑
n=0

C0
n(x)ξ

n.

By using the recurrence relations, Gegenbauer polynomial can also be represented as [10–
12]

Cα
n (x) =

1

n
[2x(n+ α− 1)Cα

n−1(x)− (n+ 2α− 2)Cα
n−2(x)].

As indicated in [9], the Gegenbauer polynomial possesses initial values as follows

Cα
0 (x) = 1, Cα

1 (x) = 2αx and Cα
2 (x) = 2α(1 + α)x2 − α.

Meanwhile, the name Einstein function is sometimes applied for one of the functions

[13, 14]: E1(ξ) =
ξ

eξ−1
, E2(ξ) =

ξ2eξ

(eξ−1)2
, E3(ξ) = log(1−e−ξ) or E4(ξ) =

ξ
eξ−1

−log(1−e−ξ).
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Among these functions, E1(ξ) = ξ
eξ−1

, has some nice properties, such as E1 is a convex
function, with its real part, Re(E1(ξ)) > 0, ∀ξ ∈ U. Its image domain is starlike about
E1(0) = 1 and is symmetric along the real axis. However, since E′

1(0) ̸> 0, a new function
E(ξ) = E1(ξ) + ξ is defined to make E ∈ P (see [15]). This function has the series
representation

E(ξ) = 1 + ξ +
∞∑
n=1

Bn

n!
ξn,

whereBn is known as the nth Bernoulli number. By traversing the contour which possesses
a radius which is less than 2πi and encloses the origin in positive (counterclockwise)
direction, the values of Bn can be determined by contour integral [16]

Bn =
n!

2πi

∮
ξ

eξ − 1

dξ

ξn+1
.

It is known that the first few terms of Bn are

B0 = 1,B1 = −1

2
,B2 =

1

6
,B4 = − 1

30
,B6 =

1

42
and B2n+1 = 0,∀n ∈ N.

Some similar work has been done with regard to coefficient bounds for bi-univalent
functions, including [17–19]. Several authors specifically studied this on Gegenbauer poly-
nomial, such as [9, 20]. So far we have not seen any work with classes associated with
Gegenbauer and Einstein functions of Sakaguchi type. Therefore, in this article, we are
solving coefficient bounds and the Fekete-Szegö functional for the aforementioned classes.

Definition 1.1. A bi-univalent function F is presumed to be in class HE∗(α) if for all
ξ, ω ∈ U, the following subordinations hold,

2ξF ′(ξ)

F(ξ)−F(−ξ)
≺ (H ∗ E)(ξ),

and
2ωG′(ω)

G(ω)− G(−ω)
≺ (H ∗ E)(ω).

Definition 1.2. A bi-univalent function F is presumed to be in class HEK(α) if for all
ξ, ω ∈ U, the following subordinations hold,

2(ξF ′(ξ))′

(F(ξ)−F(−ξ))′
≺ (H ∗ E)(ξ),

and
2(ωG′(ω))′

(G(ω)− G(−ω))′
≺ (H ∗ E)(ω).

Remark 1. If F(−ξ) = −F(ξ), then HE∗(α) and HEK(α) is a class of starlike and convex
bi-univalent functions associated with H ∗ E, respectively.
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2. Coefficient Bounds for the Class HE∗(α)

Within this section and Section 3, coefficient bounds will be investigated for bi-
univalent functions in the families HE∗(α) and HEK(α), respectively.

Theorem 2.1. Suppose that F ∈ Σ belongs to the class HE∗(α), then

|a2| ≤
|α|x

√
6x√

|8αx2 − 4x2 + 2|
,

and

|a3| ≤
α2x2

4
+

αx

2
.

Proof. Let u, v be Schwarz functions such that u(ξ) =
∑∞

k=1 dkξ
k, v(ω) =

∑∞
k=1 dkω

k,
then

(H ∗ E)(u(ξ)) = 1 +
Cα
1 (x)

2
d1ξ +

(
Cα
1 (x)

2
d2 +

Cα
2 (x)

12
d21

)
ξ2 + ... , (2)

and

(H ∗ E)(v(ω)) = 1 +
Cα
1 (x)

2
d1ω +

(
Cα
1 (x)

2
d2 +

Cα
2 (x)

12
d21

)
ω2 + ... . (3)

A Sakaguchi type function of the class A can be expanded as follows

2ξF ′(ξ)

F(ξ)−F(−ξ)
= 1 + 2a2ξ + 2a3ξ

2 + ... , (4)

and
2ωG′(ω)

G(ω)− G(−ω)
= 1− 2a2ω + (4a22 − 2a3)ω

2 + ... . (5)

Comparing coefficients of (2) with (4), and (3) with (5), the followings are obtained

2a2 =
Cα
1 (x)

2
d1, (6)

2a3 =
Cα
1 (x)

2
d2 +

Cα
2 (x)

12
d21, (7)

−2a2 =
Cα
1 (x)

2
d1, (8)

and

4a22 − 2a3 =
Cα
1 (x)

2
d2 +

Cα
2 (x)

12
d21. (9)

From (6) and (8), we have
d1 = −d1. (10)

By adding the squares of (6) and (8),

8a22 =
[Cα

1 (x)]
2

4
(d21 + d21), (11)
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and

d21 + d21 =
32a22

[Cα
1 (x)]

2
. (12)

Sum up (7) and (9), we have

4a22 =
Cα
1 (x)

2
(d2 + d2) +

Cα
2 (x)

12
(d21 + d21). (13)

Substituting (12) into (13), we obtain

4a22 =
Cα
1 (x)

2
(d2 + d2) + Cα

2 (x)

(
8a22

3[Cα
1 (x)]

2

)
,

and so (
8− 16Cα

2 (x)

3[Cα
1 (x)]

2

)
a22 = Cα

1 (x)(d2 + d2). (14)

Substitute the values of Cα
n , (14) becomes(

8− 32α(1 + α)x2 − 16α

12α2x2

)
a22 = 2αx(d2 + d2)

and

a22 =
3α2x3

8αx2 − 4x2 + 2
(d2 + d2). (15)

Since |u(ξ)| < 1 and |v(ω)| < 1, we have

|dk| ≤ 1 and |dk| ≤ 1, ∀k ∈ N. (16)

Therefore,

|a2| ≤
|α|x

√
6x√

|8αx2 − 4x2 + 2|
.

Now we proceed to evaluate the bounds of |a3|. Taking (7)−(9),

4a3 − 4a22 =
Cα
1 (x)

2
(d2 − d2) +

Cα
2 (x)

12
(d21 − d21). (17)

Substituting (10) into (17) and rearranging the terms, the following result is obtained

a3 = a22 +
Cα
1 (x)

8
(d2 − d2). (18)

Substitute (11) and the values of Cα
1 (x),

a3 =
4α2x2

32
(d21 + d21) +

2αx

8
(d2 − d2).

Taking (16) into consideration, we have

|a3| ≤
α2x2

4
+

αx

2
.
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3. Coefficient Bounds for the Class HEK(α)

Theorem 3.1. Suppose that F ∈ Σ belongs to the class HEK(α), then

|a2| ≤
|α|x

√
3x√

|10αx2 − 8x2 + 4|
,

and

|a3| ≤
α2x2

16
+

αx

6
.

Proof. Let u, v be Schwarz functions such that u(ξ) =
∑∞

k=1 dkξ
k, v(ω) =

∑∞
k=1 dkω

k,
then functions F and G that are convex about symmetric points can be expanded as
follows

2(ξF ′(ξ))′

(F(ξ)−F(−ξ))′
= 1 + 4a2ξ + 6a3ξ

2 + ... , (19)

and
2(ωG′(ω)′)′

(G(ω)− G(−ω))′
= 1− 4a2ω + (12a22 − 6a3)ω

2 + ... . (20)

Comparing coefficients of (2) with (19), and (3) with (20), the followings are obtained

4a2 =
Cα
1 (x)

2
d1, (21)

6a3 =
Cα
1 (x)

2
d2 +

Cα
2 (x)

12
d21, (22)

−4a2 =
Cα
1 (x)

2
d1, (23)

and

12a22 − 6a3 =
Cα
1 (x)

2
d2 +

Cα
2 (x)

12
d21. (24)

From (21) and (23), we obtain
d1 = −d1. (25)

By adding the squares of (21) and (23),

32a22 =
[Cα

1 (x)]
2

4
(d21 + d21), (26)

and

d21 + d21 =
128a22

[Cα
1 (x)]

2
. (27)

Sum up (22) and (24), we obtain

12a22 =
Cα
1 (x)

2
(d2 + d2) +

Cα
2 (x)

12
(d21 + d21). (28)
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Substituting (27) into (28), we have

12a22 =
Cα
1 (x)

2
(d2 + d2) + Cα

2 (x)

(
32a22

3[Cα
1 (x)]

2

)
,

and (
24− 64Cα

2 (x)

3[Cα
1 (x)]

2

)
a22 = Cα

1 (x)(d2 + d2). (29)

Substitute the values of Cα
n , (29) become(

24− 128α(1 + α)x2 − 64α

12α2x2

)
a22 = 2αx(d2 + d2)

and

a22 =
3α2x3

20αx2 − 16x2 + 8
(d2 + d2). (30)

By (16),

|a2| ≤
|α|x

√
3x√

|10αx2 − 8x2 + 4|
.

To evaluate the bounds of |a3|, take (22)−(24),

12a3 − 12a22 =
Cα
1 (x)

2
(d2 − d2) +

Cα
2 (x)

12
(d21 − d21). (31)

Substituting (25) into (31) and rearranging the terms,

a3 = a22 +
Cα
1 (x)

24
(d2 − d2). (32)

Substitute (26) and the values of Cα
1 (x),

a3 =
α2x2

32
(d21 + d21) +

αx

12
(d2 − d2).

Taking (16) into consideration, we obtain

|a3| ≤
α2x2

16
+

αx

6
.
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4. Fekete-Szegö Inequality for the Class HE∗(α)

One of the most prominent problem affiliated to coefficient estimates of univalent
functions is Fekete-Szegö inequality. First investigated in [21], it states that for univalent
functions F , the inequality

|a3 − ηa22| ≤ 1 + 2e−2η/(1−µ)

is sharp when η ∈ R.
Within this section and Section 5, the sharp bounds of Fekete-Szegö functional for the

class HE∗(α) and HEK(α) are to be evaluated.

Theorem 4.1. Suppose that F ∈ Σ belongs to the class HE∗(α), then

|a3 − ηa22| ≤

{ |α|x
2 , |1− η| ≤ |4αx2−2x2+1

6αx2 |
3α2x3(1−η)
4αx2−2x2+1

, |1− η| ≥ |4αx2−2x2+1
6αx2 |

.

Proof. Let F ∈ HE∗(α). Using (15) and (18), for some η ∈ R,

a3 − ηa22 = a22 +
Cα
1 (x)

8
(d2 − d2)− ηa22

=
2αx

8
(d2 − d2) + (1− η)

(
3α2x3

8αx2 − 4x2 + 2

)
(d2 + d2)

= αx

{[
1

4
+

3αx2(1− η)

8αx2 − 4x2 + 2

]
d2 +

[
3αx2(1− η)

8αx2 − 4x2 + 2
− 1

4

]
d2

}
= αx

{[
h1(η) +

1

4

]
d2 +

[
h1(η)−

1

4

]
d2

}
where h1(η) =

3αx2(1−η)
8αx2−4x2+2

.
Using triangle inequality and considering (16), we are able to conclude that

|a3 − ηa22| ≤

{
|α|x
2 , |h1(η)| ≤ 1

4

2|α| x |h1(η)|, |h1η)| ≥ 1
4

.

Hence,

|a3 − ηa22| ≤

{ |α|x
2 , |1− η| ≤ |4αx2−2x2+1

6αx2 |
3α2x3(1−η)
4αx2−2x2+1

, |1− η| ≥ |4αx2−2x2+1
6αx2 |

.

Corollary 4.1. Suppose that F ∈ Σ belongs to the class HE∗(α), then

|a3 − a22| ≤
|α|x
2

.

Proof. Take η = 1 in Theorem 4.1.
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5. Fekete-Szegö Inequality for the Class HEK(α)

Theorem 5.1. Suppose that F ∈ Σ belongs to the class HEK(α), then

|a3 − ηa22| ≤

{ |α|x
6 , |1− η| ≤ |5αx2−4x2+2

9αx2 |
3α2x3(1−η)

10αx2−8x2+4
, |1− η| ≥ |5αx2−4x2+2

9αx2 |
.

Proof. Let F ∈ HEK(α). Using (30) and (32), for some η ∈ R,

a3 − ηa22 = a22 +
Cα
1 (x)

24
(d2 − d2)− ηa22

=
αx

12
(d2 − d2) + (1− η)

(
3α2x3

20αx2 − 16x2 + 8

)
(d2 + d2)

= αx

{[
1

12
+

3αx2(1− η)

20αx2 − 16x2 + 8

]
d2 +

[
3αx2(1− η)

20αx2 − 16x2 + 8
− 1

12

]
d2

}
= αx

{[
h2(η) +

1

12

]
d2 +

[
h2(η)−

1

12

]
d2

}
where h2(η) =

3αx2(1−η)
20αx2−16x2+8

.
Using triangle inequality and considering (16), we are able to conclude that

|a3 − ηa22| ≤

{
|α|x
6 , |h2(η)| ≤ 1

12

2|α| x |h2(η)|, |h2(η)| ≥ 1
12

.

Hence,

|a3 − ηa22| ≤

{ |α|x
6 , |1− η| ≤ |5αx2−4x2+2

9αx2 |
3α2x3(1−η)

10αx2−8x2+4
, |1− η| ≥ |5αx2−4x2+2

9αx2 |
.

Corollary 5.1. Suppose that F ∈ Σ belongs to the class HEK(α), then

|a3 − a22| ≤
|α|x
6

.

Proof. Take η = 1 in Theorem 5.1.

6. Conclusion

By convoluting Gegenbauer polynomials and Einstein functions, some new subclasses
of Sakaguchi type bi-univalent functions are introduced in this paper. Some coefficient
bounds are evaluated and the Fekete-Szegö inequalities are assessed for these subclasses.
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