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Abstract. Let G be an undirected (simple) graph with vertex and edge sets V (G) and E(G),
respectively. A hop dominating set S in G is secure hop dominating if for each v ∈ V (G)\S, there
exists w ∈ S ∩N2

G(v) such that (S \ {w})∪{v} is hop dominating in G. The minimum cardinality
of a secure hop dominating in G, denoted by γsh(G), is called the secure hop domination number
of G. In this paper, we show that the difference γsh(G) − γh(G) can be made arbitrarily large,
where γh(G) is the hop domination number of G. We give bounds on the secure hop domination
number and characterize those graphs which attain these bounds. The value of the newly defined
parameter is determined for some classes of graphs. Moreover, we characterize the secure hop
dominating sets in the shadow graph and complementary prism and determine the value of the
parameter for each of these graphs.
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1. Introduction

In 2003, Cockayne et al. [1] introduced and studied secure domination, a variant of the
standard domination concept. As used to model a protection strategy in a given network, a
secure dominating set may be viewed as one consisting of guards that protect the network
from possible attacks. It is ensured that a guard can respond to a certain attack in some
nearby vertex and as the guard moves to this location to defend the attack, the protection
or security of the whole network is not compromised. The concept and some of its variants
have been considered and studied in [2], [3], [4], [5], [6], [7], [8], [9], and [10].

Another domination-related concept was introduced by Natarajan et al. in [11]. This
parameter, called hop domination parameter, and some of its variants have been the
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subject of interest in a number of recent studies (see [12], [13], [14], [15], [16], [17], [18],
[19], [20], [21], [22], and [23]). In this paper, we introduce and study initially the new
variant secure hop domination. The motivation stems from the fact that domination and
hop domination have many similar applications in networks. It is easily observed from its
definition that every graph admits a secure hop dominating set; in fact, the vertex set of
a graph is such a set. We give bounds on the parameter and give necessary and sufficient
conditions for a hop dominating set to be secure hop dominating. We also study the newly
defined parameter in the shadow graph and complementary prism.

2. Terminology and Notation

Let G = V (G), E(G)) be an undirected graph. For any two vertices u and v of G,
the distance dG(u, v) is the length of a shortest path joining u and v. Any u-v path
of length dG(u, v) is called a u-v geodesic. The interval IG [u, v] consists of u, v, and all
vertices lying on a u-v geodesic. The interval IG(u, v) = IG [u, v] \ {u, v}. Vertices u and
v are adjacent (or neighbors) if uv ∈ E(G). The set of neighbors of a vertex u in G,
denoted by NG(u), is called the open neighborhood of u. The closed neighborhood of u
is the set NG[u] = NG(u) ∪ {u}. If X ⊆ V (G), the open neighborhood of X is the set

NG(X) =
⋃
u∈X

NG(u). The closed neighborhood of X is the set NG[X] = NG(X) ∪X.

A set D ⊆ V (G) is a dominating set in G if for every v ∈ V (G)\D, there exists u ∈ D
such that uv ∈ E(G), that is, NG[D] = V (G). The domination number of G, denoted by
γ(G), is the minimum cardinality of a dominating set in G. Any dominating set in G with
cardinality γ(G), is called a γ-set in G. If γ(G) = 1 and {v} is a dominating set in G, then
we call v a dominating vertex in G. A dominating set D ⊆ V (G) is secure dominating in
G if for every v ∈ V (G) \D, there exists w ∈ D ∩ NG(v) such that (D \ {w}) ∪ {v} is a
dominating set in G.

A vertex v in G is a hop neighbor of vertex u in G if dG(u, v) = 2. The set N2
G(u) =

{v ∈ V (G) : dG(v, u) = 2} is called the open hop neighborhood of u. The closed hop
neighborhood of u is given by N2

G[u] = N2
G(u) ∪ {u}. The open hop neighborhood of

X ⊆ V (G) is the set N2
G(X) =

⋃
u∈X

N2
G(u). The closed hop neighborhood of X is the set

N2
G[X] = N2

G(X) ∪X. If S ⊆ V (G) and v ∈ S, then a vertex w ∈ V (G) \ S is an external
private hop neighbor of v if N2

G(w) ∩ S = {v}. The set containing all the external private
hop neighbors of v with respect to S is denoted by ephn(v;S).

A set S ⊆ V (G) is a hop dominating set in G if N2
G[S] = V (G), that is, for every

v ∈ V (G)\S, there exists u ∈ S such that dG(u, v) = 2. The minimum cardinality among
all hop dominating sets in G, denoted by γh(G), is called the hop domination number of
G. Any hop dominating set with cardinality equal to γh(G) is called a γh-set.

A hop dominating set S is secure hop dominating if for each v ∈ V (G)\S, there exists
w ∈ S ∩ N2

G(v) such that (S \ {w}) ∪ {v} is a hop dominating set in G. The minimum
cardinality among all secure hop dominating sets of G, denoted by γsh(G), is called the
secure hop domination number of G. Any secure hop dominating set with cardinality
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equal to γsh(G) is called a γsh-set.
The complement of graph G, denoted by G, is the graph with V (G) = V (G) such that

vw ∈ E(G) if and only if vw /∈ E(G). The shadow graph D2(G) of graph G is constructed
by taking two copies of G, say G1 and G2, and then joining each vertex u ∈ V (G1) to
the neighbors of its corresponding vertex u′ ∈ V (G2). For a graph G, the complementary
prism GG is the graph formed from the disjoint union of G and its complement G by
adding a perfect matching between corresponding vertices of G and G. In simple terms,
the graph GG is formed from G ∪ G by adding the edge vv for every vertex v ∈ V (G),
where v is the vertex of G corresponding to vertex v of G.

For other graph theoretic terms not mentioned here, readers may refer to [24] and [25].

3. Results

Given a graph G, the vertex set V (G) is a secure hop dominating set of G. Thus, every
graph admits a secure hop dominating set.

Remark 1. Let G1, G2, . . . , Gk be the components of a graph G. Then S is a hop
dominating set in G if and only if Sj = S ∩ V (Gj) is a hop dominating set in Gj for

each j ∈ [k] = {1, 2, · · · , k}. Moreover, γh(G) =
∑k

j=1 γh(Gj).

Theorem 1. Let G1, G2, . . . , Gk be the components of G. Then γsh(G) =
∑k

j=1 γsh(Gj).

Proof. Suppose S is a secure hop dominating set in G. Then, by Remark 1, S =
∪j∈[k]Sj and Sj = S ∩ V (Gj) is a hop dominating set in Gj for each j ∈ [k]. For j ∈ [k],
let x ∈ V (Gj)\Sj . Then x ∈ V (G)\S. Since S is a secure hop dominating set in G, there
exists y ∈ S ∩N2

G(x) such that

(S \ {y}) ∪ {x} = [(Sj \ {y}) ∪ {x}] ∪ [∪i∈[k]\{j}Si]

is a hop dominating dominating set in G. Thus, (Sj \ {y}) ∪ {x} is a hop dominating
dominating set in Gj . Since j was arbitrarily chosen, it follows that Sj is a secure hop
dominating set in Gj for each j ∈ [k]. Therefore,

γsh(G) = |S| =
k∑

j=1

|Sj | ≥
k∑

j=1

γsh(Gj).

Next, suppose that Dj is a γsh-set in Gj for each j ∈ [k]. Since each Dj is a hop
dominating set of Gj , D = ∪j∈[k]Dj is a hop dominating set in G by Remark 1. Let
v ∈ V (G) \ D. Then v ∈ V (Gt) \ Dt for a unique t ∈ [k]. Since Dt is a secure hop
dominating set in Gt, there exists w ∈ Dt ∩ N2

Gt
(v) such that (Dt \ {w}) ∪ {v} is a hop

dominating set in Gt. By Remark 1,

(D \ {w}) ∪ {v} = [(Dt \ {w}) ∪ {v}] ∪ [∪i∈[k]\{t}Di]
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is a hop dominating dominating set in G. Hence, D is a secure hop dominating set in G
and

γsh(G) ≤ |D| =
k∑

j=1

|Dj | =
k∑

j=1

γsh(Gj).

Therefore, the assertion holds.

Theorem 2. Let G be any graph. Then γh(G) ≤ γsh(G). Moreover, for each positive
integer n, there exists a connected graph G such that γsh(G) − γh(G) = n. In particular,
the difference γsh(G)− γh(G) can be made arbitrarily large.

Since every secure hop dominating set is hop dominating, it follows that γh(G) ≤
γsh(G).

Next, let n be a positive integer. Consider the graph G in Figure 1 obtained from
the complete graph Kn+2, where V (Kn+2) = {z1, z2, · · · , zn+2}, by adding the edges vw
and wz1. The set {v, w} is a γh-set in G. Thus, γh(G) = 2. Let D be a γsh-set in
G. If w /∈ D, then D = {v, z2, · · · , zn+2} or D = {z1, z2, · · · , zn+2} because D is a
hop dominating set. Hence, |D| = n + 2. Suppose w ∈ D and let zj ∈ V (G) \ D
for some j ∈ {2, 3, · · · , n + 2}. Since D is secure hop dominating, (D \ {w}) ∪ {zj}
is hop dominating. Note that N2

G(zj) ∩ [{z2, z3, · · · , zn+2} \ {zj}] = ∅. This implies
that {z2, z3, · · · , zn+2} \ {zj} ⊆ D. Hence, D = {v, w} ∪ [{z2, · · · , zn+2} \ {zj}] or D =
{w} ∪ [{z1, z2, · · · , zn+2} \ {zj}]. It follows that |D| = n + 2. Therefore, γsh(G) = n + 2
and γsh(G)− γh(G) = n.
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Figure 1: Graph G with γsh(G)− γh(G) = n

Theorem 3. Let G be any graph and let S be a hop dominating set in G. Then S
is a secure hop dominating set in G if and only if for each v ∈ V (G) \ S there exists
w ∈ S ∩N2

G(v) such that ephn(w;S) ⊆ N2
G[v].

Proof. Suppose S is a secure hop dominating set in G. Let v ∈ V (G) \ S. Since S is
secure hop dominating, there exists w ∈ S ∩N2

G(v) such that Sv = (S \ {w}) ∪ {v} is hop
dominating. Let z ∈ ephn(w;S). Then N2

G(z) ∩ S = {w}. Since Sv is a hop dominating
set, it follows that z ∈ N2

G[v]. Thus, ephn(w;S) ⊆ N2
G[v].

For the converse, suppose that the given property holds. Let p ∈ V (G) \ S. Then
by assumption, there exists q ∈ S ∩ N2

G(p) such that ephn(q;S) ⊆ N2
G[p]. Let Sp =
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(S \ {q}) ∪ {p} and let x ∈ V (G) \ S. If x = q, then q ∈ N2
G(p) ⊆ N2

G[Sp]. Suppose x ̸= q.
If x /∈ ephn(q;S), then there exists y ∈ (S \ {q}) ∩ N2

G(x) since S is a hop dominating
set in G. Hence, x ∈ N2

G(y) ⊆ N2
G[Sp]. Next, suppose that x ∈ ephn(q;S). Then by

assumption, x ∈ N2
G[p] ⊆ N2

G[Sp]. Therefore, Sp is a hop dominating set in G. Since p
was arbitrarily chosen, it follows that S is a secure hop dominating in G.

Corollary 1. Let G be a non-trivial graph and let S be a hop dominating set in G. If for
each v ∈ V (G) \ S there exists w ∈ S ∩N2

G(v) with |ephn(w;S)| = 0 or |ephn(w;S)| ≥ 1
such that dG(v, p) = 2 for all p ∈ ephn(w;S) \ {v}, then S is a secure hop dominating set
in G.

Proof. Suppose S satisfies the given property. Let v ∈ V (G)\S. By assumption, there
exists w ∈ S ∩ N2

G(v) satisfying the condition. If |ephn(w;S)| = 0, then ephn(w;S) =
∅ ⊆ N2

G[v]. Suppose |ephn(w;S)| ≥ 1. Then dG(v, p) = 2 for all p ∈ ephn(w;S) \ {v} by
assumption. Thus, ephn(w;S) ⊆ N2

G[v]. Therefore, S is a secure hop dominating set by
Theorem 3.

Theorem 4. γsh(Kn) = γsh(Kn) = n for every positive integer n.

Proof. Let G ∈ {Kn,Kn}. Since the only hop dominating set in G is V (G), it follows
that V (G) is the only secure hop dominating. Therefore, γsh(G) = n.

Lemma 1. Let G be a non-trivial graph and let S = {p, q} be a hop dominating set in G.
Then ephn(p;S) = V (G) \ (N2

G[q] ∪ {p}) and ephn(q;S) = V (G) \ (N2
G[p] ∪ {q}).

Proof. Note that since S is hop dominating, dG(p, q) ̸= 2. Let x ∈ ephn(p;S). Then
x ∈ V (G) \ S and N2

G(x) ∩ S = {p}. It follows that x ∈ V (G) \ (N2
G[q] ∪ {p}). Hence,

ephn(p;S) ⊆ V (G) \ (N2
G[q] ∪ {p}). Now, let z ∈ V (G) \ (N2

G[q] ∪ {p}). Then z ̸= p
and z /∈ N2

G[q]. Since S is hop dominating, it follows that z ∈ N2
G(p). This implies that

z ∈ ephn(p;S). Thus, V (G) \ (N2
G[q] ∪ {p}) ⊆ ephn(p;S), showing the desired equality.

Similarly, the second equality also holds.

Theorem 5. Let G be any graph of order n. Then 1 ≤ γsh(G) ≤ n. Moreover, each of
the following statements holds:

(i) γsh(G) = 1 if and only if G = K1.

(ii) γsh(G) = 2 if and only if there exist two distinct vertices v, w ∈ V (G) satisfying the
following conditions:

(p1) N2
G[{v, w}] = V (G) and N2

G(v) ∩N2
G(w) = ∅.

(p2) For each x /∈ {v, w} such that x ∈ N2
G(v) (or x ∈ N2

G(w)), it holds that V (G) \
(N2

G[w] ∪ {v}) ⊆ N2
G[x] (resp. V (G)\(N2

G[v] ∪ {w}) ⊆ N2
G[x]).

(iii) γsh(G) = n if and only if every component of G is complete.
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Proof. Clearly, 1 ≤ γsh(G) ≤ n.

(i) Suppose γsh(G) = 1, say S = {v} is a γsh-set in G. Since S cannot be a hop
dominating set if G is non-trivial, it follows that G = K1. Conversely, if G = K1, then
γsh(G) = 1.

(ii) Suppose γsh(G) = 2. Let D = {v, w} be a γsh-set of G. Since D is hop dominating,
V (G) = N2

G[{v, w}]. Suppose p ∈ N2
G(v)∩N2

G(w). Since D is a secure hop dominating set,
we may assume that Sp = (D \ {v}) ∪ {p} = {p, w} is hop dominating (otherwise, {p, v}
is hop dominating). Let q ∈ NG(p) ∩ NG(w). Then q /∈ N2

G[Sp]. This implies that D is
not hop dominating, a contradiction. Thus, (p1) holds. Next, let x ∈ V (G) \D. Assume
without loss of generality that x ∈ N2

G(v) (hence, x /∈ N2
G(w)). Since D is a secure hop

dominating set in G, it follows that Dx = (D \ {v}) ∪ {x} = {w, x} is a hop dominating
set in G. Let z ∈ ephn(v;D). Then N2

G(z) ∩D = {v}. Since Dx is hop dominating, we
must have z ∈ N2

G[x]. Hence, ephn(v;D) ⊆ N2
G[x]. By Lemma 1, (p2) holds.

For the converse, suppose that there exist distinct vertices v, w ∈ V (G) satisfy-
ing properties (p1) and (p2). Set S = {v, w}. Then S is a hop dominating set by
(p1). Let x ∈ V (G) \ S. By (p1), x ∈ N2

G(v) \ N2
G(w) or x ∈ N2

G(w) \ N2
G(v). If

x ∈ N2
G(v) \ N2

G(w) (x ∈ N2
G(w) \ N2

G(v)), then V (G) \ (N2
G[w] ∪ {v}) ⊆ N2

G[x] (resp.
V (G) \ (N2

G[v] ∪ {w}) ⊆ N2
G[x]) by (p2). By Lemma 1 and Theorem 3, S is a secure hop

dominating set in G. Since G is non-trivial, γsh(G) = |S| = 2.

(iii) Suppose γsh(G) = n. Suppose there exists a component of H of G that is not
complete. Then there exists v ∈ V (H) ⊆ V (G) such that N2

H(v) = N2
G(v) ̸= ∅, say

w ∈ N2
H(v). Set S = V (G) \ {w}. Then clearly, S is a hop dominating set in G. Since

Sw = (S \ {v}) ∪ {w} = V (G) \ {v} is also hop dominating, it follows that S is a secure
hop dominating set. This implies that γsh(G) ≤ |S| = n − 1, a contradiction. Therefore,
every component of G is complete.

For the converse, suppose that every component of G is complete. Let G1, G2, . . . , Gk

be the components of G. By assumption and Theorem 4, γsh(Gj) = |V (Gj)| for each

j ∈ [k] = {1, 2, · · · , k}. Thus, γsh(G) =
∑k

j=1 γsh(Gj) = n by Theorem 1.

Lemma 2. Let G be a graph of order n ≥ 3 such that γ(G) = 1. If |D(G)| ≥ 2, where
D(G) = {v ∈ V (G) : NG[v] = V (G)}, then γsh(G) ≥ 3.

Proof. If G = Kn, then γsh(G) = n ≥ 3. So suppose G ̸= Kn and let S be a γsh-set in
G. Since S is a hop dominating set, D(G) ⊆ S. Hence, if |D(G)| ≥ 3, then γsh(G) = |S| ≥
3. Suppose |D(G)| = 2. Since |N2

G(v)| = 0 for every v ∈ D(G) and S is a hop dominating
set, it follows that S ̸= D(G). This implies that 2 = |D(G)| < |S| = γsh(G). This proves
the assertion.

Theorem 6. Let G be a non-trivial graph of order n such that γ(G) = 1. Then γsh(G) = 2
if and if G = K1,n−1, that is, G has a unique dominating vertex v and |NG(x)| = 1 for
x ∈ V (G) \ {v}.
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Proof. Suppose γsh(G) = 2. If n = 2, then G = K2 = K1,1. Suppose n ≥ 3
and let S be a γsh-set in G. By the contrapositive of Lemma 2, |D(G)| = 1, where
D(G) = {u ∈ V (G) : NG[u] = V (G)} that is, G has a unique dominating vertex, say
v. This implies that S = {v, w} for some w ∈ V (G) \ {v}. Note that since S is a hop
dominating set, |NG(w)| = 1. Suppose there exists x ∈ V (G) \ S with |NG(x)| ≥ 2. Since
S is a secure hop dominating set and v is a dominating vertex, it follows that x ∈ N2

G(w)
and Sx = (S \ {w}) ∪ {x} = {v, x} is a hop dominating set in G. This, however, is not
possible because a vertex y ∈ NG(x) \ {v} is not in N2

G[Sx]. Therefore, |NG(x)| = 1 for
every x ∈ V (G) \ {v}. Accordingly, G = K1,n−1.

For the converse, suppose that G = K1,n−1. Then γsh(G) ≥ 2 by Theorem 5(i). Let
v0 ∈ V (G) be such that |NG(v0)| = n− 1 and let q ∈ V (G) \ {v0}. Then v0 and q satisfy
the properties (p1) and (p2) of Theorem 5(ii). Therefore, γsh(G) = 2.

Remark 2. There are graphs G with γsh(G) = 2 such that γ(G) ̸= 1.

To see this, consider G ∈ {P4, C4, H} in Figure 2. Clearly, γ(G) = 2 ̸= 1. It can be
verified easily that the blackened vertices form a γsh-set in G.
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Figure 2: Graph G with γsh(G) = 2 and γ(G) = 2

The next result is a consequence of Theorem 1, Theorem 6, and Theorem 5(ii).

Corollary 2. Let G be a graph of order n where 3 ≤ n ≤ 4. If γsh(G) = 2, then
G ∈ {P3, P4, C4,K1,3}.

Proof. By Theorem 1 and Theorem 5(ii), none of the disconnected graphs G satisfies
γsh(G) = 2. From Theorem 6, it follows that γsh(P3) = γsh(K1,3) = 2. Suppose n = 4.
As seen in Remark 2, γsh(P4) = γsh(C4) = 2. If G is connected and G /∈ {P4, C4,K1,3},
then γ(G) = 1 and either G has more that two dominating vertices or contains a single
dominating vertex and another vertex with two neighbors. Thus, γsh(G) ≥ 3 by Theorem
6. Therefore, G ∈ {P3, P4, C4,K1,3}.

Proposition 1. Let n be any positive integer. Then

γsh(Pn) =



n if n ∈ {1, 2}
2 if n = 3

2t if n = 4t, t ≥ 1

2t+ 1 if n = 4t+ 1, t ≥ 1

2t+ 2 if n = 4t+ 2, t ≥ 1

or n = 4t+ 3, t ≥ 1.
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Proof. Let Pn = [v1, v2, . . . , vn]. Then γsh(Pn) = n for n ∈ {1, 2} by Corollary 4, and
γsh(P3) = 2 by Theorem 6. Suppose n ≥ 4 and consider the following cases:

Case 1. n = 4t.

Let Sj = {v4j−3, v4j−2} for each j ∈ {1, 2, . . . , t} and set S = ∪t
j=1Sj . Then S is a secure

hop dominating set and |S| =
∑t

j=1 |Sj | = 2t. Let S′ be a hop dominating set such that

|S′| < |S|. Then one can find a vertex z ∈ V (Pn) \ S′ such that for each v ∈ S′ ∩N2
Pn

(z),
either |ephn(v;S′)| = 1 and v /∈ ephn(v; s) or |ephn(v;S′)| = 2. Hence, S′ is not a secure
hop dominating set. Thus, S is a γsh-set in Pn and γsh(Pn) = |S| = 2t.

Case 2. n = 4t+ 1(t ≥ 1).

Let Sj = {v4j , v4j+1} for each j ∈ {1, 2, . . . , t}. Then S = {v1}∪[∪t
j=1Sj ] is a hop dominat-

ing set in Pn. Since |ephn(v;S)| ≤ 1 for every v ∈ S, S is a secure hop dominating set by
Corollary 1. Following an argument in the preceding case, any hop dominating set S′ with
|S′| < |S| is not secure hop dominating. Therefore, γsh(Pn) = |S| = 1+

∑t
j=1 |Sj | = 2t+1.

Case 3. n = 4t+ 2 or 4t+ 3.

Consider the set Sj = {v4j−3, v4j−2} for each j ∈ {1, 2, . . . , t + 1}. Then S = ∪t+1
j=1Sj is a

γsh-set in Pn. Therefore, γsh(Pn) = |S| =
∑t+1

j=1 |Sj | = 2(t+ 1) = 2t+ 2.
This proves the assertion.

Proposition 2. Let n be any positive integer such that n ≥ 3. Then

γsh(Cn) =



3 if n ∈ {3, 5}
2t if n = 4t, t ≥ 1

or n = 4t+ 1, t ≥ 2

or n = 4t+ 2, t ≥ 1

2t+ 1 n = 4t+ 3, t ≥ 1.

Proof. Let Cn = [v1, v2, . . . , vn, v1]. If n = 3, then γsh(C3) = γsh(K3) = 3 by Corollary
4. If n = 5, then D = {v1, v2, v4} is a γsh- set in C5. Hence, γsh(C5) = 3. Now, suppose
n /∈ {3, 5}. Consider the following cases:

Case 1. n = 4t or n = 4t+ 1.

Let Sj = {v4j−3, v4j−2} for each j ∈ {1, 2, . . . , t}. Then S = ∪t
j=1Sj is γsh-set in Cn. It

follows that γsh(Cn) = |S| =
∑t

j=1 |Sj | = 2t.
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Case 2. n = 4t+ 3.

Set Sj = {v4j+3, v4j+4}, j = 1, 2, . . . , t− 1. Then S = {v1, v2, vn} ∪ [∪t−1
j=1Sj ] is γsh-set

in Cn. Hence, γsh(Cn) = |S| = 3 +
∑t−1

j=1 |Sj | = 3 + 2(t− 1) = 2t+ 1.

This proves the theorem.

If G1 and G2 are the copies of graph G in the definition of the shadow graph D2(G)
and if SG1 ⊆ V (G1) and SG2 ⊆ V (G2), then the sets S′

G1
and S′

G2
are the sets given by

S′
G1

= {a′ ∈ V (G2) : a ∈ SG1} and S′
G2

= {a ∈ V (G1) : a
′ ∈ SG2}.

The next result is obtained by Hassan et al. in [26].

Theorem 7. Let G be a non-trivial connected graph. Then S is a hop dominating set in
D2(G) if and only if one of the following conditions holds:

(i) S is a hop dominating set in G1.

(ii) S is a hop dominating set in G2.

(iii) S = SG1 ∪ SG2 such that SG1 ∪ S′
G2

and S′
G1

∪ SG2 are hop dominating sets in G1

and G2, respectively.

Theorem 8. Let G be a non-trivial connected graph. Then a set S ⊆ V (D2(G)) is secure
hop dominating in D2(G) if and only if one of the following conditions holds:

(i) S is a secure hop dominating set in G1.

(ii) S is a secure hop dominating set in G2.

(iii) S = SG1 ∪ SG2 such that SG1 ∪ S′
G2

and S′
G1

∪ SG2 are secure hop dominating sets
in G1 and G2, respectively.

Proof. Let S be a secure hop dominating set in D2(G). Set SG1 = S ∩ V (G1) and
SG2 = S ∩ V (G2). If SG2 = ∅, then S = SG1 is a hop dominating set in G1 by Theorem
7(i). Let x ∈ V (G1) \ SG1 . Since S is a secure hop dominating set in D2(G), there exists
w ∈ S ∩N2

D2(G)(x) such that (S \ {w})∪{x} is hop dominating in D2(G). Since SG2 = ∅,

it follows that w ∈ SG1 . Thus, (S \ {w}) ∪ {x} = (SG1 \ {w}) ∪ {x} is hop dominating
in G1 by Theorem 7(i). Therefore, S = SG1 is secure hop dominating in G1. Similarly,
S = SG2 is secure hop dominating in G2 whenever SG1 = ∅. Finally, suppose SG1 ̸= ∅
and SG2 ̸= ∅. By Theorem 7(iii), L = SG1 ∪S′

G2
and M = S′

G1
∪SG2 are hop dominating

sets in G1 and G2, respectively. Let p ∈ V (G1) \ L. Since S secure hop dominating in
D2(G), there exists q ∈ S ∩N2

D2(G)(p) such that Sp = (S \ {q}) ∪ {p} is hop dominating

in D2(G). Suppose q ∈ SG1 . Then Sp = (S \ {q})∪ {p} = [(SG1 \ {q})∪ {p}]∪ SG2 . Since
Sp is hop dominating in D2(G), it follows from Theorem 7(iii) that

[(SG1 \ {q}) ∪ {p}] ∪ S′
G2

= [(SG1 ∪ S′
G2

) \ {q}]) ∪ {p}
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is hop dominating in G1 Theorem 7(iii). Suppose q = t′ ∈ SG2 . Then t ∈ S′
G2

∩ N2
G1

(p)
and Sp = (SG1 ∪ {p}) ∪ [(SG2 \ {t′}]. Since Sp is hop dominating in D2(G),

(SG1 ∪ {p}) ∪ [(S′
G2

\ {t}] = [(SG1 \ {t}) ∪ {p}] ∪ S′
G2

= [(SG1 ∪ S′
G2

) \ {t}] ∪ {p}

is hop dominating in G1 by Theorem 7(iii). Thus, L is secure hop dominating in G1.
Similarly, M is secure hop dominating in G2. Therefore, one of (i), (ii), and (iii) holds.

For the converse, suppose (i) holds. Then S is hop dominating in D2(G) by Theorem
7(i). Let z ∈ V (D2(G)) \ S. Suppose z ∈ V (G1). Since S is secure hop dominating in
G1, there exists q ∈ S ∩ N2

G(z) such that (S \ {q}) ∪ {z} is hop dominating in G1. By
Theorem 7, (S \ {q}) ∪ {z} is hop dominating in D2(G). Next suppose z = t′ ∈ V (G2).
If t ∈ S, then dD2(G)(t, t

′) = 2. If a ∈ ephn(t;S), then dD2(G)(a, t) = dD2(G)(a, t
′) = 2.

This implies that ephn(t;S) ⊆ N2
D2(G)[t

′]. Hence, (S \ {t}) ∪ {t′} is a hop dominating

set in D2(G). Suppose t /∈ S. Since S is a secure hop dominating set in G1, there exists
s ∈ S ∩ N2

G1
(t) such that St = (S \ {s}) ∪ {t} is hop dominating in G1. Thus, St is

hop dominating in D2(G). Set St′ = (S \ {s}) ∪ {t′} and let p ∈ V (D2(G)) \ St′ . Then
p /∈ S \ {s} and p ̸= t′. Suppose first that p ∈ V (G1). If p ∈ {s, t}, then p ∈ N2

D2(G)(t
′).

Suppose p /∈ {s, t}. Since St is hop dominating, there exists r ∈ (St \ {s}) ∩ N2
G1

(p). It
follows that r ∈ St′ ∩N2

D2(G)(p). Suppose p = b′ ∈ V (G2). By considering b and following

the preceding arguments, it can be shown that there exists d ∈ St′ ∩N2
D2(G)(p). Hence, St′

is hop dominating in D2(G). Therefore, S is a secure hop dominating set in D2(G). The
same conclusion holds if (ii) holds. Finally, suppose (iii) holds. Then, by Theorem 7(iii),
S = SG1 ∪ SG2 is hop dominating. Let x ∈ V (D2(G)) \ S. Then x /∈ SG1 ∪ SG2 . We may
assume that x ∈ V (G1) \ SG1 . If x′ ∈ SG2 , then x′ ∈ S ∩N2

D2(G)(x) and (S \ {x′}) ∪ {x}
is hop dominating in D2(G). Suppose x′ /∈ SG2 . Then x /∈ S′

G2
. This implies that

x /∈ V (G1) \ (SG1 ∪ S′
G2

. Since SG1 ∪ S′
G2

is secure hop dominating in G1, there exists
y ∈ (SG1 ∪ S′

G2
) ∩N2

G1
(x) such that

[(SG1 ∪ S′
G2

) \ {y}] ∪ {x} = [(SG1 \ {y}) ∪ {x}] ∪ S′
G2

is hop dominating in G1. By Theorem 7(iii), [(SG1 \ {y}) ∪ {x}] ∪ SG2 is hop dominating
in G1. Thus, (S \ {y}) ∪ {x} = [(SG1 \ {y}) ∪ {x}] ∪ SG2 is hop dominating in D2(G).
Therefore, S is secure hop dominating in D2(G).

The next result is a direct consequence of Theorem 8.

Corollary 3. Let G be a non-trivial connected graph. Then γsh(D2(G)) = γsh(G).

Proof. Let S be a γsh-set of G = G1. Then S is a secure hop dominating set of D2(G)
by Theorem 8. Hence, γsh(D2(G)) ≤ |S| = γsh(G).

Next, suppose S′ is a γsh-set of D2(G). If S′ ⊆ V (G1) or S′ ⊆ V (G2), then S′ is a
secure hop dominating set of G by (i) and (ii) of Theorem 8. It follows that γsh(G) ≤
|S′| = γsh(D2(G)). If S′ = SG1 ∪ SG2 , then SG1 ∪ S′

G2
is secure hop dominating in G by
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Theorem 8(iii). Hence,

γsh(G) ≤ |SG1 ∪ S′
G2

| = |SG1 ∪ SG2 | = |S′| = γsh(D2(G)).

This establishes the desired equality.

Lemma 3. Let G be a graph. Then S = {x, y}, where x, y ∈ V (G), is a hop dominating
set in GG if and only if x = y.

Proof. Suppose S is a hop dominating set in GG. Suppose x ̸= y. If xy ∈ E(G), then
y /∈ N2

GG
(S) because yy ∈ E(GG). If xy /∈ E(G), then x y ∈ E(G). Thus, x /∈ N2

GG
(S).

In both cases, we obtain a contradiction. Thus, x = y.
For the converse, suppose x = y. Then clearly, S = {x, x} is a hop dominating set in

GG.

Theorem 9. Let G be a graph. Then 2 ≤ γsh(GG) ≤ 4. Moreover, each of the following
statements hold:

(i) γsh(GG) = 2 if and only if G ∈ {K1,K2,K2}.

(ii) γsh(GG) = 3 if and only if G /∈ {K2,K2} and one of the following conditions holds:

(i1) γh(G) = 2 or γh(G) = 2.

(i2) There exists a secure hop dominating set S of G with |S| = 3 such that
ephn(v;S) = 0 for some v ∈ S or a secure hop dominating set S of G with
|S| = 3 such that ephn(v;S) = 0 for some v ∈ S.

(i3) There exist vertices x, y, z,∈ V (G) such z ∈ N2
G[{x, y}], and dG(v, w) = 2 for

all v, w ∈ V (G) \N2
G({x, y}), where v ̸= w.

(i4) There exist vertices x, y, z ∈ V (G) such z ∈ N2
G
[{x, y}], and dG(v, w) = 2 for

all v, w ∈ V (G) \N2
G
[{x, y}], where v ̸= w

(iii) γsh(GG) = 4 if and only if G does not satisfy any of the properties in (i) and (ii).

Proof. Since GG is non-trivial, it follows that 2 ≤ γsh(GG). Since {v, v} is a hop
dominating set in GG for each v ∈ V (G), {v, w, v, w} is a secure hop dominating set in
GG for each pair of distinct vertices v and w of G. Therefore, 2 ≤ γsh(GG) ≤ 4.

(i) Suppose γsh(GG) = 2, say S = {p, q} is a γsh-set inGG. SupposeG /∈ {K1,K2,K2}.
Then |V (G)| ≥ 3. Suppose p, q ∈ V (G). Choose any s ∈ V (G) \ S. Then s ∈ V (GG) \ S.
Since S is secure hop dominating in GG, {p, s} or {q, s} is hop dominating in GG. Accord-
ing to Lemma 3, this is impossible. Similarly, we arrived at a contradiction if p, q ∈ V (G).
Suppose now that p ∈ V (G) and q = c ∈ V (G). By Lemma 3, p = c, i.e., S = {p, p}.
Let z ∈ V (G) \ {p}. Then, by Lemma 3, (S \ {p}) ∪ {z} = {p, z} is a hop dominating
set in G. Suppose G is disconnected. Pick w ∈ V (H) where H is a component of G such
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that p /∈ V (H). Then (S \ {p}) ∪ {w} = {p, w} is not a hop dominating set, a contradic-
tion. Hence, G is connected. Since G /∈ {K1,K2}, we may choose a vertex d such that
NG(p) ∩NG(d) ̸= ∅. This implies that (S \ {p}) ∪ {d} = {p, d} is not a hop dominating
set in G, a contradiction. Therefore, G ∈ {K1,K2,K2}.

For the converse, suppose first that G = K1. Then GG = K2 and γsh(GG) = 2. If
G ∈ {K2,K2}, then GG = P4. By Theorem 1, γsh(GG) = 2.

(ii) Suppose γsh(GG) = 3. Then G /∈ {K2,K2} by (i). If γh(G) = 2 or γh(G) = 2,
then (i1) is satisfied. Suppose γh(G) > 2 and γh(G) > 2. Let D = {x, y, s} be a γsh-set
in GG. We may assume that D ⊆ V (G). Then D is a secure hop dominating set in G.
Suppose ephn(v;S) ̸= 0 for all v ∈ D. Let u′ ∈ V (G) where u /∈ {x, y, s}. Since D is secure
hop dominating in GG, there exists w ∈ D, say w = x, such that (D \ {x}) ∪ {u} is hop
dominating in GG. This, however, is not possible because ephn(x;S) ̸= 0. Thus, there
exists v ∈ D such that ephn(v;S) = 0. This shows that (i2) holds. Next, suppose that
x, y ∈ V (G) and s = z ∈ V (G). If {x, y} is a hop dominating set in G, then γh(G) = 2
and we find that (i1) holds. Suppose {x, y} is not a hop dominating set in G. Since
zz ∈ E(GG) and D is a hop dominating set in GG, it follows that z ∈ N2

G({x, y}). Let
v ∈ V (G) \N2

G({x, y}). Since D is a secure hop dominating set in GG, Dv = (D \ {z}) ∪
{v}) = {x, y, v} is a hop dominating set in GG. Let w ∈ V (G) \ [N2

G({x, y})∪ {v}]. Since
Dv is hop dominating in GG, w ∈ N2

G(v). Hence, dG(v, w) = 2 for any pair of distinct
vertices v, w ∈ V (G) \N2

G({x, y}). This shows that (i3) holds. Similarly, (i4) holds.
For the converse, suppose (i1) holds. Note that since G /∈ {K1,K2,K2}, it follows

that γsh(GG) ≥ 3. Let {x, y} be a γh-set of G and let Q = {x, y, x}. Then clearly, Q
is a hop dominating set in GG. Let z ∈ V (GG) \ Q. Suppose z ∈ V (G). Since {x, y}
is hop dominating in G, z ∈ N2

G({x, y}). Both sets (Q \ {y}) ∪ {z} and (Q \ {x}) ∪ {z}
are hop dominating in GG. Suppose z = s ∈ V (G). If s = y, then s ∈ N2

GG
(x) and

(Q\{x})∪{s} = {y, s, x} is hop dominating in GG. Suppose s ̸= y. Then s ∈ N2
GG

(y) and

(Q \ {y}) ∪ {s} = {x, s, x} is hop dominating in GG. Hence, Q is secure hop dominating
in GG and γsh(GG) = |Q| = 3. The same conclusion holds if {x, y} is a γh-set in G.
Suppose now that (i2) holds. We may assume that there exists a secure hop dominating
set S = {a, b, c} of G with |S| = 3 and ephn(a;S) = 0. Clearly, S is hop dominating
in GG. Moreover, because of the conditions that S is secure hop dominating in G and
ephn(a;S) = 0, S is hop dominating in GG. Hence, γsh(GG) = |S| = 3. Suppose (i3)
holds, i.e., there exist vertices x, y, z,∈ V (G) such z ∈ N2

G[{x, y}], and dG(v, w) = 2 for all
v, w ∈ V (G) \N2

G({x, y}), where v ̸= w. Let R = {x, y, z}. Then R is a hop dominating
set in GG. Let u ∈ V (GG) \ R. Clearly, if u = k′ ∈ V (G), then (R \ {x}) ∪ {u} is hop
dominating if k ̸= x and (R \ {y}) ∪ {u} is hop dominating if k ̸= y. Suppose u ∈ V (G).
If u ∈ N2

G({x, y}), say u ∈ N2
G(x), then (R \ {x}) ∪ {u} is hop dominating in GG. If

u /∈ N2
G({x, y}), then (R \ {z}) ∪ {u} is hop dominating in GG because of the additional

assumption that dG(v, w) = 2 for all v, w ∈ V (G) \N2
G({x, y}), where v ̸= w. Hence, R is

a secure hop dominating set in GG and γsh(GG) = |R| = 3. The same conclusion holds if
(i4) is assumed.
(iii) This follows from (i) and (ii).



F. L. Alfeche, G. A. Malacas , S. Canoy Jr. / Eur. J. Pure Appl. Math, 18 (2) (2025), 6075 13 of 14

The next result follows from Theorem 9.

Corollary 4. Let n be a positive integer and n ≥ 2. Then

γsh(KnKn) =


2, if n = 2

3, if n = 3

4, if n ≥ 4.

4. Conclusion

Secure hop domination was introduced and initially investigated in this study. Bounds
on the parameter were given and graphs which attain these bounds were characterized.
It was shown that the difference of the secure hop domination number and the hop dom-
ination number can be made arbitrarily large. A necessary and sufficient condition for a
hop dominating set to be secure hop dominating was obtained. Moreover, the secure hop
dominating sets in the shadow graph and complementary prism were characterized. These
characterizations were used to determine the values of the parameter for these graphs. The
newly defined parameter can be studied further for trees and even for graphs resulting from
some binary operations. Moreover, it may be interesting to consider and investigate the
complexity of the secure hop dominating set problem.
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