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Abstract. Let G be a simple undirected connected graph with vertex and edge sets V (G) and
E(G), respectively. The subgraph ⟨S⟩w of S ⊆ V (G) is the graph whose vertex set is N [S]
and whose edge set Ew consists of edges in E(G) incident to some vertex in S. A subset S
of V (G) is a weakly connected set of G if ⟨S⟩w is connected. S is called a weakly connected
independent set (WCIS) of G if it is both weakly connected and independent. In this paper,
we characterize the weakly connected independent sets in the join, corona, and the lexicographic
product of two graphs. From these characterizations the weakly connected independence numbers
of the corresponding graphs are easily determined. Also, characterization of graphs G with weakly
connected independence numbers αw(G) equal to 1, n−1 and n are given. It is also shown that for
any non-negative integers k, m, and n with k > m+1 and n ≥ k+m+2, there exists a connected
graph G such that |V (G)| = n, αw(G) = k and α(G) = k +m.
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1. Introduction

The concept of weakly connected domination was introduced by Grossman [1] and was
studied by Dunbar et.al [2] where upper and lower bounds for γw(G) were obtained. This
parameter extends domination by ensuring weak connectivity within the dominating set.

Graph theory plays a vital role in modeling networks, where balancing independence
and connectivity is crucial. Weakly connected domination has been widely studied, with
works by Alzoubi et al. [3] on minimal sets and Bendali et al. [4] on computational
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complexity. Recent studies, such as those by Hamja et al. [5] and Militante and Eballe
[6], further explored variations in weakly connected parameters.

Motivated by the growing interest in weak connectivity and its role in network the-
ory, this paper introduces and investigates the weakly connected independence number.
The study of this new parameter involves addressing the inherent difficulty of combin-
ing independence and connectivity, two properties that often counteract each other in
graph structures. Similar to weakly connected domination, we believe that understanding
the weakly connected independence number will yield significant contributions to inde-
pendence theory and stimulate further research in graph operations, and combinatorial
optimization.

2. Terminologies and Notations

Let G = (V (G), E(G)) be a simple undirected graph. The distance between two
vertices v, w ∈ V (G), denoted dG(v, w), is the length of a shortest v-w path connecting v
and w. Any v-w path of length dG(v, w) is called a v-w geodesic. The open neighborhood of
a vertex v of G is the set NG(v) = {u ∈ V (G) : uv ∈ E(G)}, while its closed neighborhood
is the set NG[v] = NG(v) ∪ {v}. The open neighborhood of a set S ⊆ V (G) is the set
NG(S) = ∪v∈SNG(v) and its closed neighborhood is the set NG[S] = S ∪ NG(S). Any
v ∈ V (G) with |NG(v)| = 0 is called an isolated vertex. Vertex v is a leaf or an endvertex
if |NG(v)| = 1. A vertex w of G is a support vertex if wv ∈ E(G) for some leaf v in G. The
sets I(G), L(G), and S(G) will, respectively, denote the sets containing all the isolated
vertices, leaves, and support vertices in G.

A subset A of V (G) is an independent set if for every pair of distinct vertices in G do
not form an edge. The maximum cardinality of an independent set in G, denoted by α(G),
is called the independence number of G. Any independent set with cardinality equal to
α(G) is called an α-set in G.

A set S ⊆ V (G) is a dominating set in G if NG[S] = V (G). It is a super dominating
set if for every v ∈ V (G) \S there exists w ∈ S such that NG(w)∩ [V (G) \S] = {v}. The
domination number (super domination number) of G, denoted γ(G) (resp. γsp(G)) is the
minimum cardinality of a dominating (resp. super dominating) set in G. Any dominating
set (super dominating set) with cardinality γ(G) (resp. γsp(G)) is called a γ-set (resp.
γsp-set).

The subgraph ⟨S⟩w of S ⊆ V (G) is the graph whose vertex set is NG[S] and whose edge
set Ew consists of edges in E(G) incident to some vertex in S. A subset S of V (G) is a
weakly connected set of G if ⟨S⟩w is connected. S is called a weakly connected independent
set (WCIS) ofG if it is both weakly connected and independent. The maximum cardinality
of a WCIS of G is called the weakly connected independence number of G and is denoted
by αw(G). A WCIS of G having cardinality αw(G) is called a maximum WCIS of G. A set
S that is both a WCIS and a dominating set of G is called a weakly connected independent
dominating set (WCIDS) of G. Note that a minimum WCIDS of G always exists (see
Dunbar et al. [2]). Denote by ιc(G) the cardinality of a minimum WCIDS (or ιG-set)
of G. Let G and H be any two graphs. The join G + H is the graph with vertex set
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V (G+H) = V (G)∪ V (H) and edge set E(G+H) = E(G)∪E(H)∪ {uv : u ∈ V (G), v ∈
V (H)}. The corona G◦H of two graphs G and H is the graph obtained by taking one copy
of G and |V (G)| copies of H, and then joining the ith vertex of G to every vertex of the ith
copy of H. Denote by Hv the copy of H in G ◦H, every vertex of which is adjacent to a
unique vertex v ∈ G. The lexicographic product G[H] of two graphs G and H is the graph
with V (G[H]) = V (G)×V (H), and (u, u′)(v, v′) ∈ E(G[H]) if and only if either uv ∈ E(G)
or u = v and u′v′ ∈ E(H). Observe that any non-empty subset C of V (G) × V (H) (in
fact, any set of ordered pairs) can be written as C = ∪x∈S({x} × Tx) ⊆ V (G[H]), where
S ⊆ V (G) and Tx ⊆ V (H) for all x ∈ S. Henceforth, we shall use this form to denote any
subset C of V (G)× V (H).

Readers are referred to [7] for other basic definitions that are not given here.

3. Results

It is worth noting that if G is a graph and S ⊆ V (G), then ⟨S⟩w is simply obtained
from the ⟨N [S]⟩ by deleting all the edges e = xy in E(G) with x, y ∈ N(S) \ S.

The first result is easy and almost follows from the definitions.

Theorem 1. For any graph G of order n, 1 ≤ αw(G) ≤ α(G). Moreover,

(i) αw(G) = 1 if and only if every component H of G is complete; and

(ii) αw(G) = α(G) if and only if ⟨S⟩w is connected for some α-set Sin G.

Proof. Clearly, 1 ≤ αw(G). Since every weakly connected independent set is indepen-
dent, it follows that αw(G) ≤ α(G).

(i) Suppose that αw(G) = 1 and assume on the contrary that G has a component
H which is not complete. Then there exist distinct vertices v and w of H such that
dH(v, w) = dG(v, w) = 2. Let S = {v, w} and let u ∈ NG(v) ∩ NG(w). Then S is
independent and ⟨S⟩w is connected. This implies that αw(G) ≥ |S| = 2, contrary to our
assumption that αw(G) = 1. Thus, every component H of G is complete.

For the converse, suppose that every component of G is complete. Let S be an αw-set
in G. Since ⟨S⟩w is connected, S ⊆ V (H) for a unique complete component H of G. Since
S is an independent set in H, it follows that |S| = 1. Thus, αw(G) = |S| = 1.

(ii) Suppose that αw(G) = α(G), say S is an αw-set in G. Then S is an independent
set and and ⟨S⟩w is connected. Since |S| = α(G), it follows that S is an α-set in G.

Conversely, suppose ⟨S⟩w is connected for some α-set S in G. Then S is a weakly
connected independent set. Therefore, αw(G) = |S| = α(G).

The next result follows from Theorem 1.

Corollary 1. Let G be a connected graph of order n. Then αw(G) = 1 if and only if
G = Kn.

We now characterize all connected graphs G of order n ≥ 2 such that αw(G) = n− 1.
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Theorem 2. Let G be a connected graph of order n ≥ 2. Then αw(G) = n − 1 if and
only if G = K1,n−1.

Proof. Assume that G is a connected graph of order n ≥ 2 and αw(G) = n − 1. If
n = 2, then αw(G) = 1. By Corollary 1, G = K2 = K1,1. Suppose n ≥ 3. Let S be an
αw-set of G, say S = V (G) ∖ {w}. Since S is independent, it follows that uv /∈ E(G)
for every pair of vertices u, v ∈ S. Now, since S is weakly connected in G, it follows that
w ∈ NG(v) for each v ∈ S. Consequently, G = K1,n−1.

For the converse, suppose that G = K1,n−1. Let w be the central vertex of G. Then,
clearly, S = V (G) ∖ {w} is a weakly connected independent set in G. Since S is also an
α-set in G, it follows from Theorem 1(ii) that αw(G) = n− 1.

Theorem 3. Let k, m, and n be non-negative integers with k > m+1 and n ≥ k+m+2.
Then there exists a connected graph G such that |V (G)| = n, αw(G) = k and α(G) =
k +m.

Proof. Let us consider the following cases:
Case 1. Suppose that n = k +m+ 2.

Suppose first that m = 0. Let H1 = K1,k, where u is the central vertex of H1 and
v1, v2, . . . , vk are the remaining vertices (see Figure 1). Let G be the graph obtained from
H1 by adding the vertex x and the edges xu and xvk. Clearly, the set S1 = {v1, v2, . . . , vk}
is both an α-set and an αw-set of G. Thus, |V (G)| = k + 2 = n, αw(G) = α(G) = k.
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Figure 1: Graph G with αw(G) = α(G) = k

Next, suppose that m > 0. Let H2 be the union of K1,k−1 and K1,m+1, where u is the
central vertex of K1,k−1 and x1, x2, . . . , xk−1 are its remaining vertices, v is the central
vertex of K1,m+1 and y1, y2, . . . , ym+1 are its remaining vertices. Let G be the graph
obtained from H2 by adding the edge uv (see Figure 2). The set S2 = {x1, x2, . . . , xk−1}∪
{y1, y2, . . . , ym+1} is the unique α-set of G and S3 = {x1, x2, . . . , xk−1, v} is an αw-set of
G. Hence, |V (G)| = k +m+ 2 = n, αw(G) = |S3| = k and α(G) = |S2| = k +m.
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Figure 2: Graph G with αw(G) = k and α(G) = k +m
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Case 2. Suppose that n > k +m+ 2.
Consider the graphs G1 and G2 in Figure 3. Suppose that m = 0.
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Figure 3: Graph G with αw(G) = k and α(G) = k +m

Let t = n − k − 1 and take G = G1. Then, clearly, S4 = {x1, x2, . . . , xk} is a both
an α-set and an αw-set of G. Thus, |V (G)| = k + t + 1 = n, αw(G) = α(G) = k. If
m > 0, then set r = n − k − m − 2 and take G = G2. It can easily be verified that
|V (G)| = (k − 1) + (m+ 1) + r + 2 = n, αw(G) = k and α(G) = k +m.

The next result is a consequence of Theorem 3.

Corollary 2. The difference α(G)− αw(G) can be made arbitrarily large.

Proof. Let m, n, and k be positive integers such that k > m+1 and n = k+m+2. By
Theorem 3, there exists a connected graph with |V (G)| = n, αw(G) = k and α(G) = k+m.
Therefore, α(G)− αw(G) = m.

Next, we give the weakly connected independence number of paths and cycles.

Theorem 4. (i) αw(Pn) =
⌈n
2

⌉
= α(Pn) for all n ≥ 1.

(ii) αw(Cn) =
⌊n
2

⌋
= α(Cn) for all n ≥ 3.

Proof. (i) Let Pn = [v1, v2, . . . , vn]. If n is even, then SE = {vi ∈ V (Pn) : i is even}
and SO = {vj ∈ V (Pn) : j is odd} are α-sets in Pn. Since ⟨NG[SE ]⟩ = ⟨NG[SO]⟩ = Pn, it
follows that SE and SO are weakly connected independent sets in Pn. By Theorem 1(ii),
we have αw(Pn) = α(Pn) = |SE | = n

2 . If n is odd, then S = {vj ∈ V (Pn) : j is odd} is the
unique α-set in Pn. Again, since ⟨NG[S]⟩ = Pn, it follows that S is a weakly connected
independent set in Pn. By Theorem 1(ii), we have αw(Pn) = |S| = n+1

2 .
(ii) Let Cn = [v1, v2, . . . , vn, v1]. If n is even, the S1 = {v1, v3, · · · , vn−1} is an α-

set in Cn. Since ⟨NG[S1]⟩ = Cn, it follows that S1 is a weakly connected independent
set in Cn. By Theorem 1(ii), we have αw(Cn) = α(Cn) = |S1| = n

2 . If n is odd, then
S2 = {v1, v3, · · · , vn−2} is an α-set in Cn. Since ⟨NG[S]⟩ = Pn, it follows that S2 is a
weakly connected independent set in Cn. By Theorem 1(ii), we have αw(Cn) = α(Cn) =
|S| = n−1

2 .

In what follows, we characterize the WCIS in G +H and determine the weakly con-
nected independent number of G+H.
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Theorem 5. Let G and H be any two graphs. Then S is a WCIS in G+H if and only
if either S is an independent set in G or S is an independent set in H.

Proof. Assume that S is a WCIS in G+H. Since S is an independent set in G+H,
it follows that either S ⊆ V (G) or S ⊆ V (H). Thus, S is an independent set in G or an
independent set in H.

Conversely, let S be an independent set in G. Clearly, S is an independent set of G+H.
Since V (H) ⊆ NG+H(x) for every x ∈ NG[S], it follows that ⟨NG+H [S]⟩ is connected. This
implies that ⟨S⟩w is weakly connected in G +H. Similarly, ⟨S⟩w is weakly connected in
G+H if S be an independent set in G.

Corollary 3. Let G and H be graphs. Then

αw(G+H) = max{α(G), α(H)} = α(G+H).

Example 1. Let G be any graph and m be a positive integer. Then

(i) αw(Km +G) = max{m,α(G)},

(ii) αw(Km +G) = α(G),

(iii) αw(Km,n) = αw(Km +Kn) = max{m,n}.

The next result characterizes the WCIS of G ◦H.

Theorem 6. Let G be a connected graph and H be any graph. A subset S of V (G ◦H)
is a WCIS in G ◦H if and only if one of the following holds:

(i) S is an independent set in Hv for some v ∈ V (G).

(ii) S = C ∪ (∪v∈NG(C)Sv), where

(a) C is a WCIS in G, and

(b) Sv is an independent set (may be empty) in Hv for each v ∈ NG(C).

Proof. Suppose S is a WCIS in G ◦ H. Then S is an independent set in G ◦ H and
⟨S⟩w is connected. Consider the following cases:

Case 1: V (G) ∩ S = ∅.
Then S ⊆ ∪u∈V (G)V (Hu). Since ⟨S⟩w is connected, it follows that S is in exactly one of
the components of ⟨∪u∈V (G)V (Hu)⟩, that is, S ⊆ V (Hv) for a unique vertex v ∈ V (G).
Consequently, S is an independent subset of V (Hv). This shows that (i) holds.

Case 2: V (G) ∩ S ̸= ∅.
Let C = V (G) ∩ S and Sv = S ∩ V (Hv) for each v ∈ V (G). Since S is a WCIS in G ◦H,
C is a WCIS in G. Let v ∈ V (G) such that Sv ̸= ∅. Then Sv is an independent set in Hv
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and v /∈ C because S is an independent set in G ◦H. Moreover, since ⟨S⟩w is connected,
v ∈ NG(C). Thus, S = C ∪ (∪v∈Sv) and (a) and (b) hold.

For the converse, suppose first that (i) holds, that is, suppose that S is an independent
set of Hv for a unique v ∈ V (G). Then, clearly, S is a WCIS of G◦H. Next, suppose that
(ii) holds, i.e., S = C ∪ (∪v∈X⊆NG(C)Sv) and satisfies (a) and (b). Since C ∩NG(C) = ∅
and C and Sv and are independent sets, S is an independent set in G◦H. Moreover, since
⟨C⟩w is connected in G and v ∈ NG(C) for each non-empty set Sv, it follows that ⟨S⟩w is
connected in G ◦H. Thus, S is a WCIS in G ◦H.

αw(G ◦H) ≥ |S′| =≤ α(H)|V (G)|+ (1− α(H))ιc(G).

Corollary 4. Let G be a connected graph and H be any graph. Then αw(G◦H) = α(H)
if G = K1. Otherwise,

αw(G ◦H) = α(H)(|V (G)|+ (1− α(H))ιc(G)).

Proof. Clearly, αw(K1 ◦H) = αw(K1+H) = α(H) (see Example 1(ii)). . So suppose
G ̸= K1 and let S be an αw-set in G◦H. Then S = C∪ (∪v∈NG(C)Sv), where C is a WCIS
in G and Sv is an independent set of Hv for each v ∈ NG(C) by Theorem 6. Suppose
C is not a dominating set of G. Then V (G) \ NG[C] ̸= ∅. Choose w ∈ V (G) \ NG[C]
such that wx ∈ E(G) for some x ∈ NG(C). Then C∗ = C ∪ {w} is a WCIS in G and
NG(C

∗) = NG(C) ∪ NG(w). Let Lv be an α-set in Hv for each v ∈ NG(C
∗). Then, by

Theorem 6, S∗ = C∗ ∪ (∪v∈NG(C∗)Lv) is a WCIS of G ◦H. This implies that αw(G ◦H) =
|S| < |S∗| which is not possible. Therefore, C is a WCIDS of G. From this and the fact
that 1− α(H) ≤ 0, we have

αw(G ◦H) = |S| ≤ |C|+ α(H)(|V (G)| − |C|)

= α(H)|V (G)|+ (1− α(H))|C|

≤ α(H)|V (G)|+ (1− α(H))ιc(G).

Next, let C0 be a minimum WCIDS of G and let Sv be an α-set in Hv for each
v ∈ NG(C0). Then, by Theorem 6, S′ = C0 ∪ (∪v∈NG(C0)Sv) is a WCIS of G ◦H. Hence,

αw(G ◦H) ≥ |C| =≤ α(H)|V (G)|+ (1− α(H))ιc(G).

This proves the desired equality.

4. Lexicographic product of graphs

Sandueta and Canoy characterized the weakly connected sets in the lexicographic
product of graphs.
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Theorem 7. [8] Let G and H be connected non-trivial graphs and let C = ∪x∈S({x} ×
Tx) ⊆ V (G[H]), where S ⊆ V (G) and Tx ⊆ V (H) for all x ∈ S. Then C is weakly
connected in G[H] if and only if S is a weakly connected in G

The next result characterizes WCIS in G[H].

Theorem 8. Let G and H be connected non-trivial graphs and let C = ∪x∈S({x}×Tx) ⊆
V (G[H]), where S ⊆ V (G) and Tx ⊆ V (H) for all x ∈ S. Then C is WCIS in G[H] if and
only if S is a WCIS of G and Tx is an independent set of H for each x ∈ S.

Proof. Suppose C = ∪x∈S({x} × Tx) ⊆ V (G[H]), where S ⊆ V (G) and Tx ⊆ V (H)
for all x ∈ S and that C is a WCIS in G[H]. By Theorem 7, S is weakly connected in
G. Next, let x, y ∈ S such that x ̸= y. Pick a ∈ Tx and b ∈ Ty. Then (x, a), (y, b) ∈ C
and (x, a) ̸= (y, b). Since C is independent, (x, a)(y, b) /∈ E(G[H]). This implies that
xy /∈ E(G). Thus, S is independent in G. Hence, S a WCIS in G. Now, let x ∈ S and
let c, d ∈ Tx such that c ̸= d. Then (x, c), (x, d) ∈ C and (x, c) ̸= (x, d). Since C is an
independent set of G[H], we have (x, c)(x, d) /∈ E(G[H]). This implies that cd /∈ E(H).
Thus, Tx is an independent set of H.

Conversely, assume that S is WCIS in G and Tx is independent in H for all x ∈ S.
By Theorem 7, C is a weakly connected set in G[H]. Let (x, a), (y, b) ∈ C such that
(x, a) ̸= (y, b). Suppose x ̸= y. Since S is an independent set in G, xy /∈ E(G). Thus,
(x, a)(y, b) /∈ E(G[H]). Now, assume x = y. Then, a, b ∈ Tx and a ̸= b. Since Tx

is an independent set of H, ab /∈ E(H). Hence, (x, a)(y, b) /∈ E(G[H]). Thus, C is an
independent set of G[H]. Therefore, C is a weakly connected independent set in G[H].

Corollary 5. Let G and H be connected non-trivial graphs. Then
αw(G[H]) = αw(G)α(H).

Proof. Let C = ∪x∈S({x} × Tx) ⊆ V (G[H]), where S ⊆ V (G) and Tx ⊆ V (H) for all
x ∈ S, be an αw-set in G[H]. By Theorem 8, S is a WCIS in G and Tx is an independent
set in H for every x ∈ S. Hence,

αw(G[H]) = |C| = |Σx∈S({x} × Tx)| ≤ αw(G)α(H).

Next, let S be an αw-set in G and A be an α-set in H. For each x ∈ S, let Tx = A. By
Theorem 8, C = ∪x∈S({x} × Tx) is a WCIS in G[H]. Consequently,

αw(G[H]) ≥ |C| = |Σx∈S({x} × Tx)| = αw(G)α(H).

Therefore, αw(G[H]) = αw(G)α(H).

5. Conclusion

The concept of weakly connected independent set as well as the parameter weakly
connected independence number were introduced and initially investigated in this study.
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Graphs for which the weakly connected independence number and independence num-
ber are equal were characterized. It was shown that the difference between these two
parameters can be made arbitrarily large. We also characterized the weakly connected
independent sets in the join, corona, and lexicographic product of graphs and determined
their respective weakly connected independence number. The newly defined parameter
may be explored further for many other graphs. Interested readers may also investigate
the complexity of the WCIS problem.
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