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Abstract. In this study, we explore the construction of a sequence of hypergroupoids derived from
a quasigroup (Latin square). We demonstrate that cyclic groups yield sequences of commutative
hypergroups. Additionally, under specific conditions, we establish the formation of Hv-groups and
hypergroups. Various examples are provided to illustrate and support the theoretical concepts
presented in this paper, offering insights into their structure and applicability.
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1. Introduction

The linkage between algebraic structures and combined design problems in combina-
torial models has been a field of great interdisciplinary potential, both in abstract algebra
theory and in practical applications ranging from coding theory, cryptography, and ex-
perimental design [1, 2]. One of the fundamental conductivities is the relation between
quasigroups and Latin squares. In recent years, the topic has also been extended to hy-
perstructures, and here also to quasihypergroups and hypergroups, providing new avenues
for algebraic generalization. The paper by Iranmanesh and Ashrafi [3] opens new fields
of algebraic generalization involving the connections between quasihypergroups and Latin
squares with their hyperstructural homologues.

The study of Latin squares dates back to ancient mathematical traditions, with early
examples in Arabic manuscripts and medieval combinatorial puzzles. However, formal-
ization started in the 18th century, beginning with Leonhard Euler’s famous ”36 officers
problem” that launched a systematic investigation of their properties. A Latin square of
order n is a n × n grid of points, whose values are described by [1, 2, 4]. This set of n
independent symbols (which can all occur simultaneously in rows and columns) became
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a key object of design theory. By the 20th century Latin squares had rigorous applica-
tions in statistical experimental design (through R. A. Fisher’s work), error-correcting
codes, and group theory where they became known as multiplication tables of quasigroups
(non-associative algebraic structures satisfying the Latin square property)[1, 2, 4].

The desire to use the problem of Latin squares for applications outside of algebra en-
abled a number of generalizations, for example, reduced Latin squares, orthogonal arrays,
and partial Latin squares. All three variants relaxed or extended classical constraints in
some way. They proved helpful in solving problems in graph theory, finite geometry, and
cryptography. At the same time, quasigroups (algebraic systems with multiplication tables
of Latin squares) developed as the basis of non-associative algebras and mathematically
relevant solutions of equations. Quasigroups are not associative but contain cancellativ-
ity in their behavior. They therefore offer the bridge between discrete mathematics and
algebraic abstraction.

On the other hand, the mid-20th century also brought about the development of hy-
perstructures, a generalization of classical algebraic operations by changing binary oper-
ations (contrary to traditional algebraic operations) to set-valued operations. The fields
were opened by the work of F. Marty (1934) in the invention of hypergroups–structures
in which the product of two variables is a nonempty set—in the direction of work from
Corsini, Davvaz and Vougiouklis [5–8]. hyperstructures and their variants—such as quasi-
hypergroups and Hv-structures—have been used for modelling uncertainty theory, granu-
lar computing, and non-deterministic systems. Since hyperstructures are compatible with
multivaluedness, they offer more powerful algebraic representations for complex relational
systems.

The construction of a sequence of hypergroupoids derived from a quasigroup (Latin
square) is investigated here. We prove that cyclic groups are capable of yielding sequences
of commutative hypergroups. In addition, under some special conditions, we show that
Hv-groups and hypergroups are formed. Experiments are given in this paper to show and
support the theoretical notions presented, and to show how they are formulated and how
they may be extended to practice.

2. Main Results

A quasigroup (Q, ⋆) is a non-empty set Q with a binary operation ⋆, obeying the Latin
square property[4, 9]. This states that, for each a and b in Q, there exist unique elements
x and y in Q such that both

a ⋆ x = b,

y ⋆ a = b

hold. In other words, each element of the set occurs exactly once in each row and exactly
once in each column of the quasigroup’s multiplication table, or Cayley table. This prop-
erty ensures that the Cayley table of a finite quasigroup, and, in particular, a finite group,
is a Latin square.
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We recall basic definitions from [8]. A hypergroupoid or hyperstructure is a non-empty
set H with a hyperoperation ◦ defined on H, that is, a mapping of H ×H into the family
of non-empty subsets of H. If (x, y) ∈ H × H, its image under ◦ is defined by x ◦ y. If
A,B are non-empty subsets of H then A ◦B is given by A ◦B =

⋃
{x ◦ y|x ∈ A, y ∈ B}.

The notation a ◦A is used for {a} ◦A, and A ◦ a for A ◦ {a}. Generally, the singleton {a}
is identified with its member a.

The relational notation A ≈ B (read A meets B) is used to assert that the sets A and
B have an element in common, that is, A ∩B ̸= ∅.

A hypergroupoid (H, ◦) is called a semihypergroup if for all x, y, z ∈ H we have x ◦
(y ◦ z) = (x ◦ y) ◦ z. Moreover, a hypergroupoid (H, ◦) is called a Hv-semigroup if for all
x, y, z ∈ H we have x ◦ (y ◦ z) ∩ (x ◦ y) ◦ z ̸= ∅ or x ◦ (y ◦ z) ≈ (x ◦ y) ◦ z.

A hypergroupoid (H, ◦) is called a commutative hypergroupoid if x ◦ y = y ◦ x, for all
x, y ∈ H. Moreover it is called weak commutative if x ◦ y ∩ y ◦ x ̸= ∅ or x ◦ y ≈ y ◦ x, for
all x, y ∈ H.

A hypergroupoid (H, ◦) is called a quasihypergroup if for all x ∈ H we have x ◦H =
H ◦ x = H.

We defin two hypercompositions on (H, ◦), right extension / and left extension \, each
an inverse to ·, are defined by:

a/b = {x | a ∈ x ◦ b} and b\a = {x | a ∈ b ◦ x}.

Hence, x ≈ a/b if and only if a ≈ x ◦ b, and x ≈ b\a if and only if a ≈ b ◦ x.

Definition 1. Let X be a n-set and let A = [aij ] be a n×n matrix with aij ⊆ X for all of
1 ≤ i, j ≤ n. A is called a generalized Latin square on n-set X if the following condition
is satisfied:

n⋃
i=1

aij = X =
n⋃

j=1

aij .

Example 1. Let n = 4, X = {a, b, c, d} and aii = X and aij = {a}, where i ̸= j. Then
A = [aij ] is a generalized Latin square. In fact

A =

X a a a

a X a a

a a X a

a a a X

Definition 2. Let X be a n-set and let A = [aij ] be a n× n matrix with aij ⊆ X for all
of 1 ≤ i, j ≤ n. A is called a Latin k-hypersquare on n-set X if the following condition is
satisfied:

(1) |aij | = k.

(2) Equations a · x = c and y · b = d has exactly k solutions in X, Where the hyperoper-
ation · on X is defined as x · y = axy.
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Example 2. The generalized Latin square A in Example 1 is not a Latin k-hypersquare.
But the generalized Latin square B is a is not a Latin 2-hypersquare, where

B =

e, c e, a a, b b, c

e, a a, b b, c e, c

b, c e, c e, a a, b

a, b b, c e, c e, a

Let (H, ◦) be a semihypergroup. The relation β∗ is the transitive closure of the relation
β = ∪n≥1βn, where β1 is the diagonal relation and, for every integer n > 1, βn is the
relation defined as follows:

xβny ⇔ ∃(z1, . . . , zn) ∈ Hn : {x, y} ⊆
n∏

i=1

zi.

β∗ is the smallest strongly regular equivalence onH.Moreover, the canonical projection
ψ : H → H/β∗ is a homomorphism and if H is a hypergroup, the kernel of ψ is called
heart of H and is denoted with ωH .

Let (H, ◦) be a hypergroupoid. Let U denote the set of all finite products of elements
of H. Then relation β can be defined on H as follows:

xβy ⇔ ∃u ∈ Usuch that{x, y} ⊆ u.

If (H, ◦) is a hypergroupoid then The relation β∗ is the transitive closure of the relation
β.

Theorem 1. (Theorem 81 in [5]) If H is a hypergroup then β = β∗.

As a consequence of Theorem 1, in every hypergroup the relation β is transitive. But
in semihypergroups this not true and in Hv-groups this is an open problem.

Definition 3. Let (H, ◦) be a hypergroupoid. The hyperoperation ◦ is called total associa-
tive, if

x ◦ (y ◦ z) = H = (x ◦ y) ◦ z, ∀x, y, z ∈ H.

Example 3. Let (H, ◦T ) be a total hypergroup, i. e., for all x, y ∈ H, x ◦T y = H. Then
◦ is a total associative hyperoperation.

Example 4. Let H ̸= ∅ and |H| > 2. For every x, y ∈ H, define x◦y =

{
H − {y}, x ̸= y
H, x = y.

Then for every x, y, z ∈ H, we have y ◦ z = H − {z} and so |H − {z} = 2. So

x ◦ (y ◦ z) = x ◦ (H − {z}) = ∪w∈H−{z}x ◦ w = H.

In the similar way we have H = (x ◦ y) ◦ z. Therefore the hyperoperation ◦ is total
associative
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Now, we construct some hyperoperations from a quasigroup as follows:

Definition 4. Let (H, ⋆) be a finite quasigroup. Let H = {a0, a1, . . . , an−1} and ai ⋆ aj =
aij , for every i, j = 0, 1, . . . , n − 1. For k ∈ {0, 1, . . . , n − 1} set ai ⋆

C
k aj = aih, when

j − k ≡ h mod n. It easily to see that (H, ⋆k) is a quasigroup. Now for every x, y ∈ H
define the hyperoperation ◦Ck as follows

x ◦Ck y = {x ⋆Cm y|m = 0, 1, . . . , k − 1}.

Definition 5. Let (H, ⋆) be a finite quasigroup. Let H = {a0, a1, . . . , an−1} and ai ⋆ aj =
aij , for every i, j = 0, 1, . . . , n−1. For k ∈ {0, 1, . . . , n−1} set ai⋆

R
k aj = ahj , when j−k ≡ h

mod n. It easily to see that (H, ⋆Rk ) is a quasihypergroup. Now for every x, y ∈ H define
the hyperoperation ◦Rk as follows

x ◦Rk y = {x ⋆Rm y|m = 0, 1, . . . , k − 1}.

Proposition 1. Let (H, ⋆) be a finite quasigroup and ◦Rk and ◦Ck be the hyperoperations
in Definition 4 and 5. Then (H, ◦Cn−1) and (H, ◦Rn−1) are total hypergroup.

Proof. LetH = {a0, a1, . . . , an−1}. Since (H, ⋆) is a quasigroup then for every x, y ∈ H,
|x ◦Cn−1 y| = n and x ◦Rn−1 y ⊆ H. So for every x, y ∈ H, x ◦Rn−1 y = H.

Proposition 2. Let (H, ⋆) be a finite quasigroup and ◦Rk and ◦Ck be the hyperoperations

in Definition 4 and 5. Then for k ≥ |H|
2 , (H, ◦Rk ) and (H, ◦Ck ) are weak commutative

hypergroupoids.

Proof. For every x, y ∈ H, |x ◦Ck y| = k = |y ◦Ck x|. If x ◦Ck y ∩ y ◦Ck x = ∅ then
|x◦Ck y∪y ◦Ck x| = k+k+2 > |H| and this is a contradiction. Therefore x◦Ck y∩y ◦Ck x ̸= ∅.

In Theorem 2, the given boundary for k is the best boundary. See the next Example.

Example 5. Let (H, ⋆) be a quasigroup.

⋆0 e a b c

e e a b c
a a b c e
b c e a b
c b c e a

⋆0 e a b c

e e a b c
a a b c e
b c e a b
c b c e a

⋆1 e a b c

e c e a b
a e a b c
b b c e a
c a b c e

⋆2 e a b c

e b c e a
a c e a b
b a b c e
c e a b c

⋆3 e a b c

e a b c e
a b c e a
b e a b c
c c e a b
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◦C0 e a b c

e e a b c
a a b c e
b c e a b
c b c e a

◦C1 e a b c

e e, c e, a a, b b, c
a e, a a, b b, c e, c
b b, c e, c e, a a, b
c a, b b, c e, c e, a

◦C2 e a b c

e e, b, c e, a, c e, a, b a, b, c
a e, a, c e, a, b a, b, c e, b, c
b a, b, c e, b, c e, a, c e, a, b
c e, a, b a, b, c e, b, c e, a, c

(H, ◦C1 ) is not weak commutative.

Proposition 3. Let (H, ⋆) be a finite quasigroup and ◦Ck be the hyperoperation in Defini-
tion 4. If ⋆ is commutative then ◦Ck is weak commutative, for all k.

Proof. For every x, y ∈ H, x ⋆ y = y ⋆ x. We have x ⋆ y ∈ x ◦Ck y and y ⋆ x ∈ y ◦Ck x.
Therefore x ◦Ck y ∩ y ◦Ck x ̸= ∅ and proof is complete.

Proposition 4. Let (H, ⋆) be a finite quasigroup and ◦Ck be the hyperoperation in Defini-
tion 4. If (H, ⋆) is a cyclic group, then for every k, ◦Ck is commutative;

Proof. Let (H, ⋆) is a cyclic group then (H, ⋆) ∼= (Z,+) or (H, ⋆) ∼= (Zn,+). If
(H, ⋆) ∼= (Zn,+) then for every x, y ∈ Zn,

x ◦Ck y = {x+ y, x+ y − 1, . . . , x+ y − k} = {y + x, y + x− 1, . . . , y + x− k} = x ◦Ck y.

Therefore (H, ◦Ck ) is a commutative hypergroupoid.

Lemma 1. (H, ◦Ck ) and (H, ◦Rk ) are quasihypergroups.

Proof. For every a, b ∈ H, a ⋆ x = b and y ⋆ a = b have solutions in H. Since for every
k, a ⋆x ⊆ a ◦Ck x and y ⋆ a ⊆ y ◦Ck a therefore b ∈ a ◦Ck x and b ∈ y ◦Ck a have solutions in H.

Lemma 2. We have

⋆ = ◦C0 ⊂ ◦C1 ⊂ . . . ⊂ ◦Cn−2 ⊂ ◦Cn−1 = ◦T ,

and
⋆ = ◦R0 ⊂ ◦R1 ⊂ . . . ⊂ ◦Rn−2 ⊂ ◦Rn−1 = ◦T .

When ⋆ is the operation in Definition 5 and ◦T is the hyperoperation in Example 3.

Proof. It is straightforward.

Example 6. Let (H, ⋆) be a cycle group of order 3 by the following Cayley table

⋆ a b c

a a b c
b b c a
c c a b
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then we obtain

⋆0 a b c

a a b c
b b c a
c c a b

⋆1 a b c

a c a b
b a b c
c b c a

⋆3 a b c

a b c a
b c a b
c a b c

and therefore

◦C0 a b c

a a b c
b b c a
c c a b

◦C1 a b c

a a, c a, b b, c
b a, b b, c a, c
c b, c a, c, a a, b

◦C2 a b c

a H H H
b H H H
c H H H

.

(H, ◦Ck ) are commutative hypergroups.

Example 7. Let (H, ⋆) be a finite quasigroup by the following Cayley table

⋆ a b c

a b c a
b a b c
c c b a

then we obtain

⋆0 a b c

a b c a
b a b c
c c a b

⋆1 a b c

a a b c
b c a b
c b c a

⋆2 a b c

a c a b
b b c a
c a b c

and therefore

◦C0 a b c

a b c a
b a b c
c c a b

◦C1 a b c

a a, b b, c a, c
b a, c a, b b, c
c b, c c, a b, a

◦C2 a b c

a H H H
b H H H
c H H H

.

(H, ◦C0 ) is neither commutative nor weak commutative (because a ◦C0 c ̸≈ c ◦C0 a).
(H, ◦C1 ) is not commutative but it is weak commutative (because x ◦C1 y ≈ y ◦C1 x for all
x, y ∈ H).

Theorem 2. For every x, y ∈ H,

(1) |x ◦Ck y| = k + 1;

(2) |{u|x ∈ u ◦Ck y}| = k + 1;

(3) |{u|x ∈ y ◦Ck u}| = k + 1.
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Proof.
It obtains from definition ◦Ck .

Corollary 1. for all k = 1, 2, . . . , n, the quasihypergroups (H, ◦Ck−1) are Latin k-hypersquare.

In the next Theorem we show that for all k = |H|
2 ,

|H|
2 +1, . . . , n, the quasihypergroups

(H, ◦Ck ) are hypergroups,

Theorem 3. If k ≥ |H|
2 then ◦Ck is a total associative hyperoperation.

Proof. Let H = {a1, a2, . . . , an} and k ≥ n
2 . Suppose that x, y, z ∈ H. Then by part

(1) of Theorem 2, |y ◦Ck z| = k + 1 > n
2 . So we have y ◦Ck z = {ai0 , ai2 , . . . , aik}. Now if

h ∈ H then by part (3) of Theorem 2, there exists j = 0, 2, . . . , k such that u ∈ x ◦Ck aij .
Hence x ◦Ck (y ◦Ck z) = H. In the similar way we obtain (x ◦Ck y) ◦Ck z = H. Therefore ◦Ck
is a total associative hyperoperation.

Theorem 4. If k ≥ |H|
2 then (H, ◦Ck ) is a hypergroup.

Proof. By Theorem 3 (H, ◦Ck ) is a semihypergroup and by Lemma 1 (H, ◦Ck ) is a
quasihypergroup. Therefore (H, ◦Ck ) is a hypergroup

Example 8. In Theorem 4, the given boundary for k is the best boundary. For example
if (H, ⋆) is the quasigroup in Example 7 then (H, ◦C1 ) is not hypergroup.

Theorem 5. Let (H, ⋆) be a cyclic group of order n, i. e., (H, ⋆) ∼= (Zn,+). Then (H, ◦Ck )
is a commutative hypergroup, for all k = 0, 1, . . . , n− 1.

Example 9. Let (H, ⋆) ∼= (Z2 × Z2,+).

⋆ e a b c

e e a b c
a a e c b
b b c e a
c c b a e

then we obtain

⋆0 e a b c

e e a b c
a a e c b
b b c e a
c c b a e

⋆1 e a b c

e c e a b
a b a e c
b a b c e
c e c b a

⋆2 e a b c

e b c e a
a c b a e
b e a b c
c a e c b

⋆3 e a b c

e a b c e
a e c b a
b c e a b
c b a e c

and therefore

◦C0 e a b c

e e a b c
a a e c b
b b c e a
c c b a e

◦C1 e a b c

e e, c e, a a, b b, c
a a, b e, a e, c b, c
b a, b b, c e, c e, a
c e, c c, b a, b e, a

◦C2 e a b c

e e, b, c e, a, c e, a, b a, b, c
a e, a, b e, a, c e, b, c a, b, c
b e, a, b a, b, c e, b, c e, a, c
c e, a, c e, b, c a, b, c e, a, b
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We have (H, ⋆) is commutative but (H, ◦C1 ) and (H, ◦C2 ) are weak commutative(are not
commutative)

Theorem 6. Let (H, ⋆) be a group of order n. Then (H, ◦Ck ) is an Hv-group, for all
k = 0, 1, . . . , n− 1.

Proof. For every x, y, z ∈ X, x ⋆ (y ⋆ z) = (x ⋆ y) ⋆ z, x ⋆ (y ⋆ z) ∈ x ◦Ck (y ◦Ck z) and
(x ⋆ y) ⋆ z) ∈ (x ◦Ck y) ◦Ck z. Therefore x ◦Ck (y ◦Ck z) ∩ (x ◦Ck y) ◦Ck z ̸= ∅.

Theorem 7. Let (H, ⋆) be a quasigroup.

(1) If k = 0, then β∗ = {(x, x)|x ∈ H};

(2) If k > 0, then β∗ = H ×H.

Proof. If k = 0 then
∏n

i=1 zi is singleton and so β = {(x, x)|x ∈ H}. Now, Let k > 0
and x, y ∈ H. Consider (a1 ⋆0 a1, . . . , a1 ⋆0 an) = (b1, . . . , bn) so (a1 ⋆1 a1, . . . , a1 ⋆1 an) =
(b2, . . . , bn, b1). Therefore {bi, bi+1} ⊆ a1 ◦C2 ai ⊆ a1 ◦Ck ai. Since H = {b1, . . . , bn} then
for every x, y ∈ H there exist 1 ≤ i, j ≤ n such that i < j and bi = x and bj = y.
x = biβbi+1β . . . βbj = y. and therefore xβ∗y.

Corollary 2. For quasihypergroups (H, ◦Ck ), k = 0, 1, . . . , n− 1, we have

(1) If k = 0, then the fundamental quasigroup H
β∗ is isomorphic to H;

(2) If k > 0, then the fundamental quasigroup H
β∗ is trivial group.

Definition 6. A hypergroupoid (H, ◦) is called a transposition hypergroup if it satisfies
the axiom,

(Transposition) b \ a ≈ c/d =⇒ a ◦ d ≈ b ◦ c for all a, b, c, d ∈ H.

If the hypergroupoid (H, ◦) is commutative then hyperoperation \ = / and a commutative
transposition hypergroup is called a join space.

Theorem 8. If k = |H|
2 , . . . , n then the quasihypergroup (H, ◦Ck ) is a transposition hyper-

groupoid.

Proof. Let a, b, c, d ∈ H and b \ a ≈ c/d. Since |a ◦Ck d| = k + 1 = |b ◦Ck c| then
a ◦Ck d ∩ b ◦Ck c ̸= ∅.

Corollary 3. Let (H, ⋆) be a cyclic group of order n. Then (H, ◦Ck ) is a join space.

Proof. It obtains from Theorems 5 and 8.

Remark 1. For every result true for ◦Ck then it also holds for ◦Rk .
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3. conclusion

In this paper, we initiated the construction of sequences of hypergroupoids derived
from quasigroups (Latin squares). Our findings demonstrate that cyclic groups can gener-
ate sequences of commutative hypergroups, providing a foundational framework for further
exploration. Furthermore, under specific conditions, the formation of Hv-groups and hy-
pergroups was established, enriching the theoretical understanding of these structures. To
bridge theory with application, we conducted experiments that not only corroborate the
presented theoretical concepts but also illustrate their formulation and potential practical
extensions. These contributions pave the way for further research in hyperstructure theory
and its real-world applicability.

Future work may delve into extending the current constructions from Γ-structures to Γ-
hyperstructures, further enriching the theoretical framework. Moreover, this method can
be applied to explore fuzzy algebraic structures, expanding its applicability. For example,
recent advancements in the fuzzification of n-Lie algebras [10] and the structural aspects
of Gamma rings [11] provide promising directions for future research.

References

[1] J Denes and A D Keedwell. Latin Squares and Their Applications. Academic Press
Inc, 1974.

[2] V Shcherbacov. Elements of Quasigroup Theory and Applications. Chapman and
Hall/CRC, 2017.

[3] A Iranmanesh and A R Ashrafi. Generalized latin square. J. Appl. Math. & Com-
puting, 22(1-2):285–293, 2006.

[4] H O Pflugfelder O Chein and (eds) J D H Smith. Quasigroups and Loops: Theory
and Applications. Heldermann, Berlin, 1990.

[5] P Corsini. Prolegomena of hypergroup theory. Aviani Editore, Aviani Editore, 1993.
[6] P Corsini and V Leoreanu. Applications of hyperstructure theory. Kluwer Academic

Publishers, Advances in Mathematics, 2003.
[7] B Davvaz. Semihypergroup theory. Elsevier, 2016.
[8] B Davvaz and T Vougiouklis. A walk through weak hyperstructures; Hv-structure.

World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ., 2019.
[9] R H Bruck. A Survey of Binary Systems. University of Michigan Press, Springer-

Verlag, 1971.
[10] S Shaqaqha and M Y Al-Deiakeh. On lie homomorphisms of complex intuitionistic

fuzzy lie algebras. European Journal of Pure and Applied Mathematics, 17(4):3291–
3303, 2024.

[11] S Shaqaqha and A Dagher. Grading and filtrations of gamma rings. Italian Journal
of Pure and Applied Mathematics, 47:958–970, 2022.


