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Abstract. This paper addresses the finite-time scaled consensus problem for hybrid multi-agent
systems (HMASs) comprising both continuous-time and discrete-time agents. Motivated by the
limitations of traditional consensus models that neglect scaling effects and hybrid dynamics, we
propose a unified control framework under two sampling-based protocols. By modeling the system
as a directed communication graph and formulating the consensus condition as a linear system,
we employ the conjugate gradient method (CGM) to achieve exact convergence within at most N
steps, where N is the number of agents. Sufficient and necessary conditions are derived under each
protocol to guarantee scaled consensus, accounting for heterogeneous agent dynamics and non-
uniform scaling parameters. Numerical simulations on scale-free networks validate the theoretical
results. The key innovation lies in integrating CGM with hybrid protocols to realize fast and
scalable consensus in finite time for complex distributed systems.
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1. Introduction

Multi-agent systems (MASs) have emerged as a central framework in modern control
theory, enabling a wide range of applications such as robotic coordination, distributed
sensor networks, smart grids, and autonomous vehicular systems [1, 2]. A key problem
in MAS research is achieving consensus—ensuring that agents, through local interactions,
synchronize their state trajectories. Traditional consensus protocols have focused on either
continuous-time or discrete-time agents and typically address node-based consensus under
the assumption of uniform coupling and homogeneous dynamics [1, 2]. These classical
models, although foundational, often fall short in capturing real-world heterogeneity, es-
pecially in applications involving time-varying communication, non-uniform interactions,
and hybrid dynamics.
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To address these challenges, recent studies have extended the consensus framework
to consider more generalized forms such as edge consensus [3–5], where the goal is to
synchronize the relative differences (edges) between agent states, and scaled consensus [6,
7], where agents achieve agreement under fixed or dynamic proportional scaling rules. Edge
consensus is particularly relevant in force coordination, energy balance, and distributed
resource allocation, while scaled consensus arises naturally in networks with hierarchical
or weighted roles. However, the simultaneous treatment of these phenomena in hybrid
multiagent systems (HMASs), which consist of both continuous-time and discrete-time
agents, remains underdeveloped. Recent advances in generalized operator theory and
analytical methods also offer promising directions for extending the modeling and solution
structure of consensus problems (see, e.g., [8, 9]).

Hybrid MASs have been investigated in various settings, such as in the works of Liu
et al. [10] and Zheng et al. [11], which explore hybrid protocols for achieving asymp-
totic consensus. Nevertheless, most existing results are limited to either continuous-time
or discrete-time settings, or rely on asymptotic convergence, which can be impractical
in time-sensitive applications like real-time robotic coordination and networked control
[12, 13]. Finite-time consensus, by contrast, ensures that the network achieves syn-
chronization within a finite number of steps and has received growing attention in the
context of homogeneous MASs [14, 15]. Yet, the finite-time scaled consensus problem
for HMASs—especially with heterogeneous weights and non-uniform dynamics—remains
largely open.

The concept of scaled consensus was formally introduced by Roy [6], and subsequently
extended through impulsive control techniques [7, 16], event-triggered communication
[5, 17], and adaptive weight tuning [18]. Donganont and Liu [7] derived sufficient con-
ditions for scaled consensus under impulsive protocols, while more recent results in [19]
showed that properly designed leader-following strategies can ensure finite-time conver-
gence. However, these approaches either lack generality in hybrid dynamics or do not offer
systematic control design with guaranteed convergence in finite steps.

To overcome these limitations, we propose a novel distributed protocol that achieves
finite-time scaled consensus for HMASs using the conjugate gradient method (CGM), orig-
inally developed by Hestenes and Stiefel [20] and further formalized in numerical analysis
texts such as Axelsson and Barker [21]. The CGM is known for its rapid convergence prop-
erties, guaranteeing exact solutions to linear systems within N steps for N -dimensional
positive definite systems. This paper reformulates the finite-time scaled consensus problem
as a symmetric positive definite system Cy∗ = b, where C = ρI +H|B|L, with H being
a diagonal step-size matrix, B = diag(β1, . . . , βN ), and L the Laplacian of the underlying
directed graph [22, 23].

Our analysis considers two hybrid protocols. Case I assumes that all agents update
based on sampled information, while Case II allows continuous-time agents to access their
current states in real time. For each case, we derive the necessary and sufficient conditions
for convergence under the CGM-based update rule, showing that consensus is reached in
finite time when the sampling period satisfies 0 < h < 1

dmaxβmax
and the network contains

a directed spanning tree. The theoretical developments are validated through numerical
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simulations over large-scale directed scale-free networks.
The contributions of this paper are fourfold:

• We formulate and solve the finite-time scaled consensus problem in hybrid multi-
agent systems with both continuous-time and discrete-time dynamics.

• A distributed control protocol based on the conjugate gradient method is proposed,
guaranteeing finite-time convergence in at most N iterations.

• We provide necessary and sufficient conditions under which the proposed protocol
achieves consensus, extending the classical scaled consensus literature to hybrid set-
tings.

• Comprehensive simulations are conducted to demonstrate the effectiveness and scal-
ability of the proposed method compared to traditional asymptotic consensus algo-
rithms.

Although the theoretical development in this paper is necessarily formula-intensive, we
have carefully structured the exposition to support clarity and readability. The problem is
introduced in Section 2 with formal definitions and system models, followed by the main
theoretical results in Section 3, where each step is rigorously justified using foundational
lemmas and structured arguments. To ensure accessibility for readers less familiar with
hybrid consensus systems or conjugate gradient methods, we provide comprehensive nu-
merical simulations in Section 4. These examples visually demonstrate the convergence
behavior of the proposed protocol and offer intuitive insights into the finite-time scaled
consensus process. We believe this structure balances mathematical rigor with practical
interpretability.

2. Preliminaries and problem formulations

2.1. Preliminaries

In this section, we present essential concepts from algebraic graph theory and matrix
analysis that support the subsequent development. Let the interaction topology among n
agents be described by a weighted undirected graph G = (V, E ,A), where V = {v1, . . . , vn}
is the set of nodes, E ⊆ V × V the set of edges, and A = [aij ] ∈ Rn×n the nonnegative
symmetric adjacency matrix. An edge exists between nodes vi and vj if and only if aij > 0,
and the neighbor set of agent i is defined as Ni = {j : aij > 0}. The degree of node vi
is di =

∑n
j=1 aij , and the degree matrix is D = diag(d1, . . . , dn). The Laplacian matrix

is then given by L = D − A. A path in G is a sequence of consecutive edges, and the
graph is strongly connected if a path exists between any two distinct nodes. For further
background, see [22, 23].

We denote by R the set of real numbers, N the positive integers, and Rn the n-
dimensional Euclidean space. For a vector or matrix X, let XT denote its transpose and
∥X∥ its Euclidean norm. The vectors 1n and 0n represent the all-ones and all-zeros vectors



M. Donganont, S. Intawichai, S. Phongchan / Eur. J. Pure Appl. Math, 18 (2) (2025), 6163 4 of 20

of dimension n, respectively. The identity matrix of order n is In, and diag{a1, . . . , an}
denotes a diagonal matrix with specified entries. A matrix B = [bij ] ∈ Rn×n is nonnegative
if bij ≥ 0 for all i, j, and A ≥ B implies A − B is nonnegative. A matrix is stochastic
if it is nonnegative and row-stochastic. A stochastic matrix P is called SIA (stochastic,
indecomposable, and aperiodic) if limk→∞ P k = 1ny

T for some vector y ∈ Rn. These
concepts are instrumental for the analysis of consensus algorithms in multi-agent systems.

2.2. Problem formulation

In this work, we assume that the hybrid multi-agent system consists of N agents
which are continuous-time and discrete-time dynamic agents, labelled 1 through N , where
the number of continuous-time dynamic agents is M , M < N . Without loss of generality,
we assume that agent 1 through M are continuous-time dynamic agents. Moreover, IM =
{1, 2, 3, ...,M}, IN/IM = {M +1,M +2,M +3, ..., N}. Then, the dynamics of each agent
with nonnegative scalar scale has the dynamics as follows:{

βiẋi(t) = ui(t), for i ∈ IM ,

βlxl(tk+1) = βlxl(tk) + ul(tk), tk = kh, for l ∈ IN/IM ,
(2.1)

where the scalar scale βi ̸= 0 for all i, h is the sampling period, xi ∈ R and ui ∈ R are the
state and control input of agent i, respectively. The initial conditions are xi(0) = xi0, and
x(0) = [x10, x20, ..., xN0]

T .

Definition 1. The HMAS (2.1) achieves a finite-time scaled consensus with respect to
(β1, . . . , βN ) if for each i, j ∈ IN , there exists a setting time T satisfying

lim
t→T

∥βixi(t)− βjxj(t)∥ = 0

and
βixi(t) = βjxj(t), for all t ≥ T,

for any initial conditions.

Remark 1. If the scalar scaling factor satisfies βi = 1 for all i, the finite-time scaled con-
sensus reduces to the standard finite-time consensus, highlighting that the scaled framework
generalizes the classical consensus problem.

Furthermore, some useful definitions, lemmas, and properties are provided as follows.

Definition 2. Let A ∈ Rn×n be a Hermitian positive definite matrix. A set of nonzero
vectors {p1, . . . , pm} ⊂ Rn is said to be A-conjugate if it satisfies (Api, pj) = 0 for all
i ̸= j, where (·, ·) denotes the standard inner product.

Lemma 1. [21] Let A ∈ Rn×n be a Hermitian positive definite matrix. Then, in the
absence of roundoff errors, the conjugate gradient method computes the exact solution to
Ax = b in at most n iterations.
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Lemma 2. [16] Let L be the Laplacian matrix of a directed network G and βi ̸= 0 be
a scalar scale of agent i. Define βmax = max1≤i≤n|βi|, H = diag{h1, h2, ..., hn} such

that 0 < hi <
1

dmaxβmax
, i ∈ In, and |B| = diag(|β1|, |β2|, ..., |βn|). Then In −H|B|L is

SIA, i.e., lim
k→∞

[In −H|B|L]k = 1ny
T if and only if G has a spanning tree. Furthermore,

[In −H|B|L]T y = y, 1Tny = 1, where each element of y is nonnegative.

Lemma 3. [16] Consider a hybrid multi-agent system (2.1) over a connected directed
graph G, where each agent i is associated with a nonzero scalar βi ̸= 0. Suppose all
agents update their control inputs at discrete sampling times tk and the step size satisfies
0 < h < 1

dmaxβmax
. Then, under the following hybrid consensus protocol:{

ui(t) = |βi|
∑

j∈Ni
aij [βjxj(tk)− βixi(tk)], for t ∈ (tk, tk+1], i ∈ IM ,

ui(tk) = h|βi|
∑

j∈Ni
aij [βjxj(tk)− βixi(tk)], for i ∈ IN \ IM ,

the system achieves scaled consensus to the vector (β1, . . . , βN ) if and only if the graph G
contains a spanning tree.

2.3. Conjugate gradient-based consensus

In this work, we formulate a finite-time consensus protocol for the hybrid multi-agent
system using the conjugate gradient method (CGM) [20]. This approach significantly
improves convergence speed by iteratively moving in mutually conjugate directions rather
than steepest descent. The CGM updates the state vector according to the iteration

x(k) = x(k − 1) + tkpk, (1)

where pk ∈ Rn denotes the conjugate direction at iteration k, defined recursively as

pk = rk + βkpk−1, (2)

with the conjugacy coefficient βk given by

βk =
(rk, rk)

(rk−1, rk−1)
, (3)

rk ∈ Rn is the residual vector at iteration k, measuring the difference between the
current solution and the exact one

rk = b− Cxk, (4)

where C ∈ Rn×n is the system matrix and b ∈ Rn is the target vector and tk ∈ R is the
step size, calculated to minimize the error along the direction pk, given by

tk =
(rk, pk)

(Cpk, pk)
. (5)
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The matrix C is defined as
C = ρIn + L,

where ρ > 0 is a small scalar ensuring positive definiteness and L is the Laplacian matrix
of the underlying communication graph.

The CGM is particularly well-suited for consensus problems in multi-agent networks
because it guarantees convergence to the consensus state in at most n iterations for an
n-agent system, provided that C is symmetric and positive definite. This property makes
CGM an attractive method for achieving fast and reliable consensus in hybrid settings.

3. Main results

This section presents the main theoretical contributions of the paper, focusing on finite-
time scaled consensus in hybrid multi-agent systems (HMAS). We consider two hybrid
consensus protocols under different information access scenarios. In Case I, all agents
update their control inputs synchronously at discrete sampling times based on sampled
neighbor states. In contrast, Case II allows continuous-time agents to observe their own
states in real time while still relying on sampled neighbor information. For both cases, we
design consensus protocols and employ the conjugate gradient method (CGM) to derive
necessary and sufficient conditions ensuring finite-time scaled consensus.

3.1. Case I

Assume that all agents communicate with their neighbours and update their control
inputs in a sampling time tk. Then, the consensus protocol for hybrid multi-agent system
(2.1) is defined as follows:

ui(t) = sgn(βi)
∑
j∈Ni

aij [βjxj(tk)− βixi(tk)], for t ∈ (tk, tk+1], i ∈ IM

ui(tk) = h · sgn(βi)
∑
j∈Ni

aij [βjxj(tk)− βixi(tk)], for i ∈ IN/IM ,
(3.1)

where A = [aij ] is the weighted adjacency matrices associated with the graph G and
h = hi = tk+1 − tk is the sampling period.

Theorem 1. Let G be a directed and connected communication graph associated with the
hybrid multi-agent system (2.1), and let βi ̸= 0 be an arbitrary but fixed scalar weight
assigned to agent i ∈ IN . Suppose that the hybrid system evolves under the consensus pro-
tocol (3.1), and define the weighted state vector y(t) = Bx(t), where B = diag(β1, . . . , βN ).
Assume that the sampling period h satisfies

0 < h <
1

dmaxβmax
,
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where dmax = maxi
∑

j∈Ni
aij and βmax = maxi |βi|. Then, for any initial condition

y(0) ∈ RN , the discrete-time update law

y(k) = y(k − 1) + tkpk, with tk =
(b− Cy(k−1), pk)

(Cpk, pk)
, k = 1, 2, . . . , N,

where {p1, . . . , pN} is a set of C-conjugate directions and

C = ρI +H|B|L, b = ρy∗, 0 < ρ < 1,

guarantees that the hybrid multi-agent system (2.1) achieves scaled consensus in finite
time N if and only if the communication graph G contains a directed spanning tree.

Here, H = diag(h1, . . . , hN ) is the step-size matrix associated with each agent, L de-
notes the graph Laplacian, and y∗ is the unique consensus value satisfying Cy∗ = b. The
scaled consensus is reached in the sense that

lim
k→N

βixi(tk) = y∗, ∀i ∈ IN .

Proof. (Sufficiency) To establish finite-time convergence to scaled consensus using
the conjugate gradient method (CGM), we begin by expressing the hybrid multi-agent
system (2.1) under protocol (3.1) in a linear-algebraic form.

Let βi ̸= 0 be a fixed scalar scale associated with agent i, and define the weighted
state variable as yi(t) = βixi(t) for all i ∈ IN . Then, the hybrid protocol (3.1) yields the
agent-level dynamics:{

βixi(t) = βixi(tk) + (t− tk)|βi|
∑

j∈Ni
aij [βjxj(tk)− βixi(tk)] , if i ∈ IM ,

βixi(tk+1) = βixi(tk) + h|βi|
∑

j∈Ni
aij [βjxj(tk)− βixi(tk)] , if i ∈ IN \ IM .

(3.2)

This leads to a unified update law:

βixi(tk+1) = βixi(tk) + h|βi|
∑
j∈Ni

aij [βjxj(tk)− βixi(tk)] , ∀i ∈ IN . (3.3)

By letting y(tk) = (β1x1(tk), . . . , βNxN (tk))
T ∈ RN , and |B| = diag(|β1|, . . . , |βN |), the

collective dynamics of the hybrid system are written compactly as

y(tk+1) = [I −H|B|L] y(tk),

where L is the Laplacian matrix of the directed graph G and H = diag(h1, . . . , hN ) denotes
the step-size matrix, with hi = h for discrete-time agents and hi defined from continuous-
time dynamics for others. Under the assumption that the sampling gain satisfies

0 < h <
1

dmaxβmax
,

and that G contains a directed spanning tree, we invoke Lemma 3 which guarantees that
the hybrid system under protocol (3.1) achieves asymptotic scaled consensus, i.e.,

lim
k→∞

y(k) = y∗ · 1,
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for some y∗ ∈ R. Furthermore, this implies

H|B|Ly∗ = 0.

To enforce finite-time convergence, we reformulate the asymptotic relation into the
linear system:

Cy∗ = b, with C = ρI +H|B|L, b = ρy∗, 0 < ρ < 1.

Here, C is symmetric and positive definite by construction L is positive semi-definite, |B|
and H are positive diagonal matrices, and ρ > 0 ensures strict definiteness.

Applying the conjugate gradient method (CGM) to solve this system, we use the
iterative scheme:

y(k) = y(k − 1) + tkpk, tk =
(rk−1, pk)

(Cpk, pk)
,

where rk−1 = b− Cy(k − 1) is the residual, and the conjugate directions are updated via

pk = rk + βkpk−1, βk =
(rk, rk)

(rk−1, rk−1)
.

Since C is Hermitian positive definite, we invoke Lemma 1, which guarantees that
CGM will reach the exact solution y∗ within at most N steps, where N is the dimension
of the system.

Hence, the hybrid multi-agent system (2.1) achieves finite-time scaled consensus under
protocol (3.1) in exactly N discrete iterations.

(Necessity) Suppose now that the communication graph G does not contain a di-
rected spanning tree. Then the Laplacian matrix L has multiple zero eigenvalues, and the
matrix I −H|B|L does not converge to a rank-one projection matrix.

Remark 2 (Practical Realizability of SPD Assumption). The convergence of the conjugate
gradient method (CGM) in at most N steps fundamentally depends on the symmetric
positive definiteness (SPD) of the matrix C = ρI +H|B|L. This condition is satisfied in
our setup by design, given that:

• H and |B| are positive diagonal matrices,

• L is the graph Laplacian of a directed network with a spanning tree (ensuring semi-
definiteness),

• and ρ > 0 ensures strict positive definiteness.

However, in practical implementations, especially in large-scale or uncertain environments,
exact symmetry or definiteness may be compromised due to quantization effects, communi-
cation delays, or model perturbations. In such scenarios, the matrix C may lose the SPD
property, potentially affecting the theoretical guarantees of CGM.
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To mitigate this, the scalar ρ can serve as a tunable regularization parameter to en-
force the positive definiteness of C even under perturbations. Moreover, in cases where
C becomes non-SPD or indefinite, alternative Krylov subspace methods such as GMRES
(Generalized Minimal Residual) or BiCG (Biconjugate Gradient) may be employed, though
they lack the finite-step convergence guarantee of CGM.

Future research may extend this framework to explicitly address these non-idealities,
including the design of preconditioned variants of CGM and analysis of convergence un-
der weaker assumptions. This extension is particularly relevant for real-world systems
where distributed computation, communication noise, or non-convex agent interactions
are present.

Corollary 1. Let G be a connected directed communication network of the hybrid multi-
agent system (2.1) with βi = 1 for all i ∈ IN . Then, the conjugate directions p1, . . . , pN
are C-conjugate. For any initial value y(0) ∈ RN , and the step size

tk =
(b− Cyk−1, pk)

(Cpk, pk)
,

the discrete-time update

y(k) = y(k − 1) + tkpk (k = 1, 2, . . . , N)

drives the system to consensus in finite time N under the protocol (3.1), provided that
0 < h < 1

dmax
, where

C = ρI +HL, b = ρy∗, 0 < ρ < 1,

and y∗ is the consensus value. The hybrid multi-agent system (2.1) achieves finite-time
consensus if and only if G contains a directed spanning tree.

Proof. (Sufficiency) Assume βi = 1 for all i ∈ IN . Under protocol (3.1), the agent
dynamics simplify to

xi(tk+1) = xi(tk) + h
∑
j∈Ni

aij [xj(tk)− xi(tk)], ∀i ∈ IN .

Let y(tk) = x(tk) ∈ RN . The global update becomes

y(tk+1) = [I −HL]y(tk),

where L is the Laplacian of G, and H = diag(h1, . . . , hN ) is the step-size matrix.
If G contains a directed spanning tree and 0 < h < 1

dmax
, Lemma 3 ensures that the

system asymptotically converges to consensus:

lim
k→∞

y(k) = x∗1, with Lx∗ = 0.

To ensure finite-time convergence, we reformulate this steady-state condition as

Cy∗ = b, where C = ρI +HL, b = ρx∗, 0 < ρ < 1.
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Since C is symmetric and positive definite, the conjugate gradient method (CGM) applies.
Starting from any initial y(0), the update

y(k) = y(k − 1) + tkpk, tk =
(rk−1, pk)

(Cpk, pk)
,

with rk−1 = b− Cy(k − 1) and C-conjugate directions pk, converges exactly to x∗1 in at
most N steps by Lemma 1. Thus, the system achieves consensus in finite time.

(Necessity) If G lacks a directed spanning tree, then L has multiple zero eigenvalues,
and I − HL fails to reach consensus. Hence, the CGM cannot converge to a common
solution, and consensus is not achievable.

3.2. Case II

All agents communicate with their neighbours and update their control inputs in a
sampling time tk. However, different from Case I, we assume that each continuous-time
dynamic agent can observe its own state in real time. Then, the consensus protocol for
hybrid multi-agent system (2.1) is defined by:

ui(t) = |βi|
∑
j∈N

aij [βjxj(tk)− βixi(t)], for t ∈ (tk, tk+1], i ∈ IM

ui(tk) = h · |βi|
∑
j∈Ni

aij [βjxj(tk)− βixi(tk)], for i ∈ IN/IM ,
(3.5)

where all variables are defined as in the previous section.

Theorem 2. Let G be a connected directed communication network of the hybrid multi-
agent system (2.1), and let βi ̸= 0 be any scalar scale of agent i. Suppose the vectors
p1, . . . , pN are C-conjugate, and let the initial value be y(0) ∈ RN , with step size defined as

tk =
(b− Cyk−1, pk)

(Cpk, pk)
.

Then, under the discrete-time dynamic protocol

y(k) = y(k − 1) + tkpk (k = 1, 2, . . . , N),

the hybrid multi-agent system (2.1) with control protocol (3.5) achieves scaled consensus
in finite time N if and only if the graph G contains a spanning tree.

Here, the system matrix and forcing term are defined by

C = ρI +H|B|L, b = ρy∗, 0 < ρ < 1,

where |B| = diag(|β1|, . . . , |βN |), L is the Laplacian of G, and y∗ is the scaled consensus
value.
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Assume the sampling gain satisfies

0 < h <
1

d̄maxβmax
,

where d̄max = maxi
∑N

j=1 aij, and βmax = maxi |βi|. The hybrid protocol used is given by
ui(t) = |βi|

∑
j∈Ni

aij [βjxj(tk)− βixi(t)], for t ∈ (tk, tk+1], i ∈ IM ,

ui(tk) = h · |βi|
∑
j∈Ni

aij [βjxj(tk)− βixi(tk)], for i ∈ IN \ IM .

Then the conjugate gradient method solves the linear system Cy∗ = b in at most N itera-
tions, and hence the hybrid multi-agent system reaches scaled consensus in finite time.

Proof. (Sufficiency) To establish finite-time convergence to scaled consensus, we
reformulate the hybrid system (2.1) under protocol (3.5) in a linear framework.

Let βi ̸= 0 and define yi(t) = βixi(t). Then, the dynamics under protocol (3.5) yield

ẏi(t) =
∑
j∈Ni

aij [yj(tk)− yi(t)], t ∈ (tk, tk+1], i ∈ IM ,

with the solution at tk+1 given by

yi(tk+1) = yi(tk)e
−

∑
j aijh +

(
1− e−

∑
j aijh

)
·
∑

j aijyj(tk)∑
j aij

.

For i ∈ IN \ IM (discrete-time agents), the update is

yi(tk+1) = yi(tk) + h
∑
j∈Ni

aij [yj(tk)− yi(tk)].

By defining y(tk) = (y1(tk), . . . , yN (tk))
T and |B| = diag(|β1|, . . . , |βN |), the global

update becomes
y(tk+1) = [I −H|B|L]y(tk),

where L is the Laplacian of G, and H = diag(h1, . . . , hN ) is a diagonal matrix with entries

hi =


1− e−

∑
j aij |βi|h∑

j aij |βi|
, i ∈ IM ,

h, i ∈ IN \ IM .

By assuming 0 < h < 1
d̄maxβmax

and that G contains a spanning tree, Lemma 3 guaran-

tees that the system reaches asymptotic scaled consensus:

lim
k→∞

y(k) = y∗ · 1, with H|B|Ly∗ = 0.
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To enforce finite-time convergence, we define the linear system

Cy∗ = b, where C = ρI +H|B|L, b = ρy∗, 0 < ρ < 1.

Here, C is symmetric and positive definite. By applying the conjugate gradient method
(CGM), the solution is updated as

y(k) = y(k − 1) + tkpk, tk =
(rk−1, pk)

(Cpk, pk)
,

where rk−1 = b− Cy(k − 1) and pk are C-conjugate directions updated via

pk = rk + βkpk−1, βk =
(rk, rk)

(rk−1, rk−1)
.

By Lemma 1, the CGM converges to the exact solution y∗ in at most N steps. Thus,
the hybrid system achieves scaled consensus in finite time.

(Necessity) If G does not contain a spanning tree, then L has multiple zero eigen-
values, and [I −H|B|L] does not converge to a rank-one projection matrix. Hence,

lim
k→∞

∥βixi(tk)− βjxj(tk)∥ ≠ 0, for some i, j,

implying that finite-time scaled consensus cannot be achieved.

Corollary 2. Let G be a directed and connected communication network associated with
the hybrid multi-agent system (2.1), and assume that βi = 1 for all i ∈ IN . Suppose the
state update follows the hybrid control protocol:

ui(t) =
∑
j∈Ni

aij [xj(tk)− xi(t)], for t ∈ (tk, tk+1], i ∈ IM ,

ui(tk) = h ·
∑
j∈Ni

aij [xj(tk)− xi(tk)], for i ∈ IN \ IM .

Define the consensus variable y(t) = x(t) and suppose the sampling gain satisfies

0 < h <
1

d̄max
,

where d̄max = maxi
∑N

j=1 aij. Then, under the discrete-time conjugate gradient update:

y(k) = y(k − 1) + tkpk, tk =
(b− Cy(k−1), pk)

(Cpk, pk)
, k = 1, 2, . . . , N,

with C = ρI + HL, b = ρy∗, and ρ ∈ (0, 1), the hybrid multi-agent system achieves
consensus in finite time N if and only if G contains a directed spanning tree.
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Proof. (Sufficiency) By assuming βi = 1 for all i ∈ IN , the scaled state reduces to
y(t) = x(t). Under protocol (3.5), the hybrid dynamics simplify to{

ẋi(t) =
∑

j∈Ni
aij [xj(tk)− xi(t)], i ∈ IM ,

xi(tk+1) = xi(tk) + h
∑

j∈Ni
aij [xj(tk)− xi(tk)], i ∈ IN \ IM .

Solving the continuous-time dynamics yields

xi(tk+1) = xi(tk)e
−dih +

(
1− e−dih

)
·
∑

j aijxj(tk)

di
, for i ∈ IM ,

where di =
∑

j aij . This leads to the global update

y(tk+1) = [I −HL]y(tk),

where L is the Laplacian matrix of G, and H = diag(h1, . . . , hN ) with

hi =


1− e−dih

di
, i ∈ IM ,

h, i ∈ IN \ IM .

If 0 < h < 1
d̄max

and G contains a spanning tree, then by Lemma 3, the system
asymptotically reaches consensus

lim
k→∞

y(k) = x∗ · 1, with Lx∗ = 0.

To achieve convergence in finite time, we define the system

Cy∗ = b, with C = ρI +HL, b = ρx∗, 0 < ρ < 1.

Since C is symmetric and positive definite, the conjugate gradient method (CGM) applies.
Starting from y(0), the update

y(k) = y(k − 1) + tkpk, tk =
(b− Cy(k−1), pk)

(Cpk, pk)
,

with C-conjugate directions pk and residuals rk = b − Cy(k), converges to x∗ in at most
N iterations by Lemma 1. Hence, the system reaches consensus in finite time.

(Necessity) If G lacks a directed spanning tree, then L has more than one zero
eigenvalue, and [I −HL] cannot drive all agent states to consensus. Consequently, CGM
cannot converge to a common value, and finite-time consensus is not achievable.

Remark 3. The hybrid consensus protocols designed in Cases I and II differ in terms
of real-time information access. In Case I, both continuous-time and discrete-time agents
rely entirely on sampled data, resulting in a uniform discrete update structure. In contrast,
Case II leverages the ability of continuous-time agents to observe their own states in real
time, leading to an inherently more accurate and responsive dynamic. This difference
enhances convergence behavior and may reduce sensitivity to sampling frequency in Case
II.
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Remark 4. The proposed conjugate gradient-based consensus algorithm ensures finite-
time convergence in at most N iterations, where N is the number of agents. This is a
significant improvement over traditional asymptotic methods, which guarantee only even-
tual convergence. By reformulating the consensus problem as a linear system and exploiting
the properties of CGM under a symmetric positive definite matrix, the method achieves
computational efficiency and exact consensus within a bounded time frame.

Remark 5. Unlike classical consensus protocols that assume uniform scaling or homoge-
neous agent dynamics, the presented framework allows for arbitrary scaling factors βi ̸= 0
across agents. This generalization facilitates the study of heterogeneous networks and sup-
ports applications where agents must reach agreement up to prescribed proportions. The
sufficient conditions established for convergence under hybrid protocols ensure robustness
with respect to both graph topology and agent heterogeneity.

4. Numerical examples

The following examples are presented to illustrate the key theoretical results and to
provide intuitive insight into the dynamics of the proposed CGM-based consensus protocol.

Example 1. Consider a hybrid multi-agent system consisting of N = 100 agents (see
Figure 1). The agents are divided into continuous-time (CT) agents and discrete-time
(DT) agents, with nodes IM = {1, 2, . . . , 50} being CT agents and the remaining IN \IM =
{51, 52, . . . , 100} being DT agents. Each agent is assigned a random positive scaling factor
βi ∈ (0.5, 1.5), where βmax = 1.458. The initial condition x(0) ∈ R100 is sampled from
a standard normal distribution, and the scaled state is given by y(0) = Bx(0), where
B = diag(β1, . . . , β100).

The communication network G is constructed using the Barabási-Albert model. This
type of network ensures that a directed spanning tree exists, which is essential for the
convergence conditions in Theorem 1 to hold. The adjacency matrix A ∈ R100×100 gives
rise to a directed graph with a guaranteed spanning tree. The Laplacian matrix is then
computed as L = D −A. The maximum out-degree is given by dmax = maxi

∑
j aij = 9,

and the step-size matrix H, where the main diagonal elements are h = 0.01 satisfied
the condition 0 < h < 1/(dmaxβmax) = 0.074673 holds for stability. Choosing ρ = 0.1
and using the scaled CGM protocol with matrix C = ρI + H|B|L and b = ρy∗, the
system converges to a scaled consensus state in at most N steps. The results confirm that
consensus is reached in 18 iterations to 0.0788887 (see Figure 2), validating the sufficiency
of Theorem 1.

However, if the step size h is not satisfied 0 < h < 1/(dmaxβmax), consensus can-
not be guaranteed (see Figure 3). Furthermore, when βi = 1 for all i, the evolution of
agent states under the proposed consensus protocol (3.1) is illustrated in Figure 4. The
upper subplot, corresponding to Theorem 1 with uniform scaling, demonstrates that the
multi-agent system achieves consensus in only 16 iterations, confirming the finite-time con-
vergence property of the conjugate gradient-based protocol. In contrast, the lower subplot
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Figure 1: A connected communication network G.

shows the performance of the classical consensus algorithm, which converges asymptot-
ically and requires more than 90 iterations to attain a similar level of precision. This
comparison highlights the substantial improvement in convergence rate achieved by the
proposed method. The acceleration arises from the use of the conjugate gradient method,
which efficiently solves the associated linear system within a finite number of steps, unlike
traditional averaging schemes that offer only asymptotic guarantees. Hence, the proposed
protocol ensures both computational efficiency and theoretical rigor for consensus in uni-
form and heterogeneous multi-agent settings.

The simulation results validate the theoretical guarantees of the proposed CGM-based
finite-time scaled consensus protocols for hybrid multi-agent systems (HMAS). Through
MATLAB implementation, it is shown that the system achieves scaled consensus in sig-
nificantly fewer iterations than the number of agents, provided the step size h satisfies
the condition 0 < h < 1

dmaxβmax
. For instance, in a network of N = 100 agents with

heterogeneous scaling factors βi ∈ (0.5, 1.5), consensus is attained in only 18 iterations.
This highlights the superior convergence rate of the proposed method compared to classi-
cal iterative consensus schemes, which typically achieve only asymptotic convergence and
may require hundreds or thousands of iterations for practical precision.

Furthermore, when h exceeds the prescribed upper bound, the states diverge, reinforc-
ing the necessity of adhering to the theoretical step-size constraint. A comparison with
the classical consensus framework, such as that in [11] where βi = 1, reveals that while
both approaches reach consensus, the CGM-based method achieves it in finite time with
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Figure 2: The state trajectories of all using CGM and protocol (3.1) with h = 0.01.

guaranteed termination. In contrast, classical approaches converge only asymptotically
and assume uniform agent dynamics. Additionally, the scaled consensus framework per-
mits agents to synchronize to a weighted average that accounts for individual importance,
unlike the uniform consensus in classical settings. These advantages are evident in the
simulation plots, where the proposed method demonstrates faster, finite-time convergence
to a non-uniform consensus value in general settings and to the arithmetic mean in the
uniform case. Collectively, the results confirm that the proposed CGM-based protocol
significantly accelerates convergence and enhances flexibility in modeling heterogeneous
MAS dynamics.

Computational considerations and scalability

Although the conjugate gradient method (CGM) guarantees finite-time convergence
in at most N iterations for an N -agent system, its practical deployment in large-scale
or real-time multi-agent applications presents several computational and numerical chal-
lenges. From a numerical perspective, the performance of CGM can degrade due to finite-
precision arithmetic, the presence of ill-conditioned Laplacian matrices as the network size
increases, and the accumulation of round-off errors in the recursive construction of conju-
gate directions. These issues may affect both convergence speed and accuracy. To address
such concerns, preconditioning techniques and modified orthogonalization schemes (e.g.,
Gram-Schmidt) can be employed to improve the condition number and numerical robust-
ness of the system matrix C = ρI +H|B|L. In terms of computational cost, while CGM
converges faster than traditional iterative consensus algorithms, each iteration involves
inner products and matrix-vector multiplications, leading to a per-iteration complexity
of O(N2) in dense networks. For sparse graphs, however, the computational burden re-
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Figure 3: The state trajectories using CGM and protocol (3.1) with h = 0.112, where hmax = 0.076473.

mains manageable and scales linearly with the number of nonzero elements. Comparative
benchmarks (see Figure 5) illustrate that CGM achieves consensus with significantly fewer
iterations and improved precision compared to classical average-based consensus schemes,
albeit with higher per-step computational demands. These characteristics make CGM
particularly attractive in scenarios where fast convergence is critical and sufficient com-
putational resources are available. Looking ahead, potential directions for real-time im-
plementation include leveraging sparse matrix representations, developing asynchronous
variants to reduce synchronization overhead, and exploring preconditioned or hybrid CGM
protocols to enhance scalability and resilience in embedded or distributed cyber-physical
systems.

5. Conclusion

In this paper, we developed a conjugate gradient-based protocol to achieve finite-
time scaled consensus in hybrid multi-agent systems composed of both continuous-time
and discrete-time agents. By reformulating the problem as a symmetric positive definite
linear system, we leveraged the conjugate gradient method (CGM) to ensure exact con-
sensus in at most N iterations. Two hybrid protocols were studied, and necessary and
sufficient conditions were derived for each. Numerical simulations confirmed the theoreti-
cal findings, showcasing significant improvements in convergence speed and robustness over
classical methods. Future research may focus on extending the framework to nonlinear
or uncertain dynamics, time-varying topologies, event-triggered communication, and real-
time experiments to enhance scalability, efficiency, and practical deployment in large-scale
distributed systems. In addition to the theoretical contributions and numerical validation
presented in this work, we acknowledge the importance of practical implementation in real-
world cyber-physical systems. Toward this goal, future efforts will focus on bridging the
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Figure 4: The state trajectories when βi = 1 for all i compare to the classical consensus [11].

Figure 5: Comparison of CGM and classical average consensus in terms of convergence rate, runtime, and
residual error decay for increasing network sizes. CGM shows faster convergence at the expense of slightly
higher per-step computational load.

proposed CGM-based hybrid consensus protocols with embedded hardware and real-time
control frameworks. Specifically, we are developing a hardware-in-the-loop (HIL) testbed
using Raspberry Pi–based mobile robots to implement and verify the proposed protocol
in a decentralized, networked environment. Additionally, applications in distributed en-
ergy management for microgrids are being explored, where agents represent distributed
energy resources (DERs) with hybrid digital-analog communication interfaces. We also
plan to integrate event-triggered mechanisms into the protocol to reduce communication
and actuation load, which is critical for resource-constrained and delay-sensitive systems.
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These future directions aim to demonstrate the feasibility, scalability, and robustness of
the proposed method in complex, real-time applications.

Acknowledgments

We are thankful to the editors and the anonymous reviewers for many valuable sug-
gestions to improve this paper.

Declarations

Funding

This research was supported by University of Phayao and Thailand Science Research and
Innovation Fund (Fundamental Fund 2025, Grant No. 5020/2567).

Declaration of Competing Interest

The author declares that they have no known competing financial interests or personal
relationships that could have appeared to influence the work reported in this paper.

Author’s Contribution

All authors contributed equally to the manuscript and typed, read, and approved the final
manuscript.

References

[1] R. Olfati-Saber and R. M. Murray. Consensus problems in networks of agents
with switching topology and time-delays. IEEE Transactions on Automatic Con-
trol, 49(9):1520–1533, 2004.

[2] W. Ren and R. W. Beard. Consensus seeking in multi-agent systems under dynam-
ically changing interaction topologies. IEEE Transactions on Automatic Control,
50(5):655–661, 2005.

[3] X. Jia, H. Li, X. Chi, and T. Lv. Edge-based dynamic event-triggered leader-follower
consensus. IEEE Transactions on Systems, Man, and Cybernetics, 2024.

[4] C. Park, S. Donganont, and M. Donganont. Achieving edge consensus in hybrid multi-
agent systems: Scaled dynamics and protocol design. European Journal of Pure and
Applied Mathematics, 18(1):5549, 2025.
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